

LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Tait Environmental Management, Inc.

October 19, 2006

701 N. Park Center Drive Santa Ana, CA 92705 ATTN: Mr. Matt Hillman

SUBJECT: Boeing Realty Corp., Former C-6 Torrance, Dta Validation

Dear Mr. Hillman,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on October 16, 2006. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project # 15615:

SDG #

Fraction

IPI0724, IPI0893,

Volatiles, Sulfide

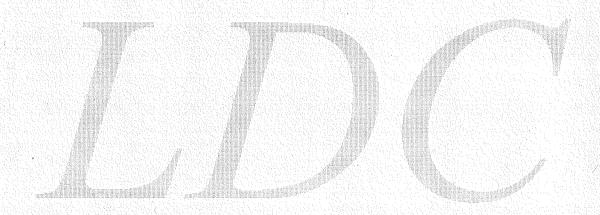
IPI1170

The data validation was performed under Tier 1, Tier 2 and Tier 3 guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998

Please feel free to contact us if you have any questions.

Sincerely,


stella S. Cuenco

Project Manager/Senior Chemist

-					_					 	_	_	_	 _	 _	_						-				
			S						L											Ĺ	L			Ц		Ξ
			≥										L	L					L			L	L			0
			တ																							0
			≥																							0
			S																							0
			≥																							0
			S																							
			≥																		T					0
	(9- 2		S																							0
	lg (3																			Г				0
	Blc		S																						7	0
	ď.d		8									<u> </u>														0
	ဝြ		S																		T			П	\top	0
	LDC #15615 (Tait Environmenal Management, Inc. / Boeing Realty Corp., Bldg		8			П														 _	T		<u> </u>	\Box		0
	Rea		S																					П		0
	lg F		8									ļ												Н	\dashv	
	eir		S																						7	
	/ Bc		≯																						1	
	JC. /		S																							
t 1	t, Ir		8																							0
Attachment 1	Jen		S																							0
tach	gen		Ν																					П		
¥	ına		S																						1	
	Ma		8																							
	nal		S																							
	me		8																							0
	101		S	ri																						
	nvi		Α	Tier				,																		
	it E	= (5.3)	S	0	0	0																			1	
	(Ta	S= (376.2)	Χ	1	-	-																				က
	115	A 0B)	S	0	0	0																				0
	156	VOA (8260B)	≯	4	3	Ŧ																				∞
	# U			90/9	90/9	90/9																				1
	P	(3) DATE DUE		11/06/06	11/06/06	11/06/06															ļ					
		민																								\blacksquare
		DATE REC'D		10/16/06	10/16/06	10/16/06																				
		#	=	24	33	20																				
		SDG#	Water/Soil	IP10724	IP10893	IP11170																				B/SC
			Wat	=	=	=																				
		()	Matrix:															 							_	
		ТРС	Ma	∢	ω	ပ																				Total

Boeing Realty Corp., Bldg C-6 Data Validation Reports LDC# 15615

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg C-6

Collection Date:

September 8, 2006

LDC Report Date:

October 18, 2006

Matrix:

Water

Parameters:

Volatiles

Validation Level:

Tier 1

Laboratory:

TestAmerica

Sample Delivery Group (SDG): IPI0724

Sample Identification

TMW_15_WG090806_0001 XMW-09_WG090806_0001 MW006_WG090806_0001 CMW026_WG090806_0001 MW006_WG090806_0001RE1 MW006_WG090806_0001RE2 CMW026_WG090806_0001RE2

Introduction

This data review covers 7 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met with the following exceptions:

Sample	Compound	Total Days From Sample Collection Until Analysis	Required Holding Time (in Days) From Sample Collection Until Analysis	Flag	A or P
MW006_WG090806_0001RE2	2-Butanone	16	14	J (all detects) UJ (all non-detects)	Α

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance data were not reviewed for Tier 1.

III. Initial Calibration

Initial calibration data were not reviewed for Tier 1.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Tier 1.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
6l14007-BLK1	9/14/06	Tetrahydrofuran	5.0 ug/L	TMW_15_WG090806_0001 XMW-09_WG090806_0001 MW006_WG090806_0001

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
MW006_WG090806_0001RE1	2-Butanone	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	А

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg C-6 Volatiles - Data Qualification Summary - SDG IPI0724

SDG	Sample	Compound	Flag	A or P	Reason
IP10724	MW006_WG090806_0001RE2	2-Butanone	J (all detects) UJ (all non-detects)	А	Technical holding times
iPl0724	MW006_WG090806_0001RE1	2-Butanone	J (all detects)	Α	Compound quantitation and CRQLs

Boeing Realty Corp., Bldg C-6 Volatiles - Laboratory Blank Data Qualification Summary - SDG IPI0724

No Sample Data Qualified in this SDG

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Santa Ana, CA 92705 Attention: Mehmet Pehlivan Project ID: Boeing C-6 Torrance

EM2727

Report Number: IPI0724

Sampled: 09/08/06

Received: 09/08/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result		Extracted		Qualifiers
Sample ID: 1P10724-08 (TMW_15	WG090806 0001 - Wat	er)			Sample	ed: 09/08/0)6		
Reporting Units: ug/l		,					, ,		
Acetone	EPA 8260B	6114007	4.5	10	ND	1	09/14/06	09/14/06	
Benzene	EPA 8260B	6114007	0.28	1.0	ND	1	09/14/06	09/14/06	
Bromobenzene	EPA 8260B	6114007	0.27	1.0	ND	1	09/14/06	09/14/06	
Bromochloromethane	EPA 8260B	6114007	0.32	1.0	ND	1	09/14/06	09/14/06	
Bromodichloromethane	EPA 8260B	6114007	0.30	1.0	ND	1	09/14/06	09/14/06	
Bromoform	EPA 8260B	6114007	0.32	1.0	ND	1 .	09/14/06	09/14/06	
Bromomethane	EPA 8260B	6114007	0.42	1.0	ND	1	09/14/06	09/14/06	
2-Butanone (MEK)	EPA 8260B	6114007	3.8	5.0	ND	1	09/14/06	09/14/06	
n-Butylbenzene	EPA 8260B	6114007	0.37	1.0	ND	1	09/14/06	09/14/06	
sec-Butylbenzene	EPA 8260B	6114007	0.25	1.0	ND	1	09/14/06	09/14/06	
tert-Butylbenzene	EPA 8260B	6114007	0.22	1.0	ND	1	09/14/06	09/14/06	
Carbon Disulfide	EPA 8260B	6114007	0.48	1.0	ND	1	09/14/06	09/14/06	
Carbon tetrachloride	EPA 8260B	6114007	0.28	0.50	ND	1	09/14/06	09/14/06	
Chlorobenzene	EPA 8260B	6114007	0.36	1.0	ND	1	09/14/06	09/14/06	
Chloroethane	EPA 8260B	6114007	0.40	2.0	ND	1	09/14/06	09/14/06	
Chloroform	EPA 8260B	6114007	0.33	1.0	3.2	1	09/14/06	09/14/06	
Chloromethane	EPA 8260B	6114007	0.30	2.0	ND	1	09/14/06	09/14/06	
2-Chlorotoluene	EPA 8260B	6114007	0.28	1.0	ND	1	09/14/06	09/14/06	
4-Chlorotoluene	EPA 8260B	6114007	0.29	1.0	ND	1	09/14/06	09/14/06	
1,2-Dibromo-3-chloropropane	EPA 8260B	6114007	0.92	2.0	ND	1	09/14/06	09/14/06	
Dibromochloromethane	EPA 8260B	6114007	0.28	1.0	ND	1	09/14/06	09/14/06	
1,2-Dibromoethane (EDB)	EPA 8260B	6114007	0.32	1.0	ND	1	09/14/06	09/14/06	
1,4-Dichlorobenzene	EPA 8260B	6114007	0.37	1.0	ND	1	09/14/06	09/14/06	
1,2-Dichlorobenzene	EPA 8260B	6114007	0.32	1.0	ND	1	09/14/06	09/14/06	
1,3-Dichlorobenzene	EPA 8260B	6114007	0.35	1.0	ND	1	09/14/06	09/14/06	
Dichlorodifluoromethane	EPA 8260B	6114 0 07	0.79	1.0	ND	1	09/14/06	09/14/06	
1,2-Dichloroethane	EPA 8260B	6114007	0.28	0.50	ND	1	09/14/06	09/14/06	
1,1-Dichloroethane	EPA 8260B	6114007	0.27	1.0	ND	1	09/14/06	09/14/06	
1,1-Dichloroethene	EPA 8260B	6I14007	0.42	1.0	1.4	1	09/14/06	09/14/06	
cis-1,2-Dichloroethene	EPA 8260B	6I14007	0.32	1.0	1.6]	09/14/06	09/14/06	
trans-1,2-Dichloroethene	EPA 8260B	6114007	0.27	1.0	ND	1	09/14/06	09/14/06	
1,2-Dichloropropane	EPA 8260B	6114007	0.35	1.0	ND]	09/14/06	09/14/06	
2,2-Dichloropropane	EPA 8260B	6I14007	0.34	1.0	ND	1	09/14/06	09/14/06	
cis-1,3-Dichloropropene	EPA 8260B	6114007	0.22	0.50	ND	1	09/14/06	09/14/06	
1,1-Dichloropropene	EPA 8260B	6114007	0.28	, 1.0	ND	1	09/14/06	09/14/06	
trans-1,3-Dichloropropene	EPA 8260B	6114007	0.32	0.50	ND	1	09/14/06	09/14/06	
Ethylbenzene	EPA 8260B	6114007	0.25	1.0	ND	1	09/14/06	09/14/06	
Hexachlorobutadiene	EPA 8260B	6114007	0.38	1.0	ND	1	09/14/06	09/14/06	
2-Hexanone	EPA 8260B	6114007	2.6	6.0	ND	1	09/14/06	09/14/06	
Iodomethane	EPA 8260B	6114007	1.0	2.0	ND	1	09/14/06	09/14/06	
Isopropylbenzene	EPA 8260B	6114007	0:25	1.0	ND	1	09/14/06	09/14/06	

TestAmerica - Irvine, CA

Nicholas Marz For Michele Chamberlin

Project Manager

A 101806

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IPI0724 <Page 16 of 51>

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Santa Ana, CA 92705 Attention: Mehmet Pehlivan Project ID: Boeing C-6 Torrance

EM2727

Report Number: 1PI0724

Sampled: 09/08/06

Received: 09/08/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IP10724-08 (TMW_15_WG0	90806_0001 - Wat	ter) - cont.			Sample				
Reporting Units: ug/l					-				
p-lsopropyltoluene	EPA 8260B	6114007	0.28	1.0	ND	1	09/14/06	09/14/06	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	6114007	0.32	1.0	ND	1	09/14/06	09/14/06	
Methylene chloride	EPA 8260B	6114007	0.70	1.0	0.86	1	09/14/06	09/14/06	J
4-Methyl-2-pentanone (MIBK)	EPA 8260B	6114007	3.5	5.0	ND	1	09/14/06	09/14/06	
n-Propylbenzene	EPA 8260B	6114007	0.27	1.0	ND	1	09/14/06	09/14/06	
Styrene	EPA 8260B	6114007	0.16	1.0	ND	1	09/14/06	09/14/06	
1,1,1,2-Tetrachloroethane	EPA 8260B	6114007	0.27	1.0	ND	1	09/14/06	09/14/06	
1,1,2,2-Tetrachloroethane	EPA 8260B	6114007	0.24	1.0	ND	1	09/14/06	09/14/06	
Tetrachloroethene	EPA 8260B	6114007	0.32	1.0	ND	1	09/14/06	09/14/06	
Tetrahydrofuran (THF)	EPA 8260B	6114007	2.3	10	ND	1	09/14/06	09/14/06	
Toluene	EPA 8260B	6114007	0.36	1.0	ND	1	09/14/06	09/14/06	
1,2,3-Trichlorobenzene	EPA 8260B	6114007	0.45	1.0	ND	1	09/14/06	09/14/06	
1,2,4-Trichlorobenzene	EPA 8260B	6114007	0.48	1.0	ND ·	1	09/14/06	09/14/06	
1,1,2-Trichloroethane	EPA 8260B	6114007	0.30	1.0	ND	1	09/14/06	09/14/06	
1,1,1-Trichloroethane	EPA 8260B	6114007	0.30	1.0	ND	1	09/14/06	09/14/06	
Trichloroethene	EPA 8260B	6114007	0.26	1.0	18	1	09/14/06	09/14/06	
Trichlorofluoromethane	EPA 8260B	6114007	0.34	2.0	ND	1	09/14/06	09/14/06	
1,2,3-Trichloropropane	EPA 8260B	6114007	0.40	1.0	ND	1	09/14/06	09/14/06	
1,2,4-Trimethylbenzene	EPA 8260B	6114007	0.23	1.0	ND	1	09/14/06	09/14/06	
1,3,5-Trimethylbenzene	EPA 8260B	6I14007	0.26	1.0	ND	1	09/14/06	09/14/06	
Vinyl acetate	EPA 8260B	6114007	1.7	6.0	ND	1	09/14/06	09/14/06	
Vinyl chloride	EPA 8260B	6114007	0.26	0.50	ND	1	09/14/06	09/14/06	
Xylenes, Total	EPA 8260B	6114007	0.90	1.0	ND	1	09/14/06	09/14/06	
Surrogate: 4-Bromofluorobenzene (80-120	%)				98 %				
Surrogate: Dibromofluoromethane (80-120	1%)				99%				
Surrogate: Toluene-d8 (80-120%)					103 %				

TestAmerica - Irvine, CANicholas Marz For Michele Chamberlin
Project Manager

0/08/0/7

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

Santa Ana, CA 92705

Project ID: Boeing C-6 Torrance 701 N. Parkcenter Drive

EM2727

Report Number: IP10724

Sampled: 09/08/06

Received: 09/08/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IP10724-09 (XMW-09_V	WG090806_0001 - Wat	er)			Sample	ed: 09/08/0)6		
Reporting Units: ug/l					•				
Acetone	EPA 8260B	6114007	4.5	10	ND	1	09/14/06	09/14/06	
Benzene	EPA 8260B	6114007	0.28	1.0	2.0	1	09/14/06	09/14/06	
Bromobenzene	EPA 8260B	6114007	0.27	1.0	ND	1	09/14/06	09/14/06	
Bromochloromethane	EPA 8260B	6114007	0.32	1.0	ND	1	09/14/06	09/14/06	
Bromodichloromethane	EPA 8260B	6114007	0.30	1.0	0.41	1	09/14/06	09/14/06	J
Bromoform	EPA 8260B	6114007	0.32	1.0	ND	1	09/14/06	09/14/06	
Bromomethane	EPA 8260B	6114007	0.42	1.0	ND	1	09/14/06	09/14/06	
2-Butanone (MEK)	EPA 8260B	6114007	3.8	5.0	ND	1	09/14/06	09/14/06	
n-Butylbenzene	EPA 8260B	6114007	0.37	1.0	ND	1	09/14/06	09/14/06	
sec-Butylbenzene	EPA 8260B	6114007	0.25	1.0	ND	1	09/14/06	09/14/06	
tert-Butylbenzene	EPA 8260B	6114007	0.22	1.0	ND	1	09/14/06	09/14/06	
Carbon Disulfide	EPA 8260B	6114007	0.48	1.0	ND	1	09/14/06	09/14/06	
Carbon tetrachloride	EPA 8260B	6114007	0.28	0.50	0.61	1	09/14/06	09/14/06	
Chlorobenzene	EPA 8260B	6114007	0.36	1.0	200	1	09/14/06	09/14/06	
Chloroethane	EPA 8260B	6114007	0.40	2.0	ND	1	09/14/06	09/14/06	
Chloroform	EPA 8260B	6114007	0.33	1.0	240	ŀ	09/14/06	09/14/06	
Chloromethane	EPA 8260B	6114007	0.30	2.0	ND	1	09/14/06	09/14/06	
2-Chlorotoluene	EPA 8260B	6114007	0.28	1.0	ND	1	09/14/06	09/14/06	
4-Chlorotoluene	EPA 8260B	6114007	0.29	1.0	ND	1	09/14/06	09/14/06	
1,2-Dibromo-3-chloropropane	EPA 8260B	6114007	0.92	2.0	ND	1	09/14/06	09/14/06	
Dibromochloromethane	EPA 8260B	6114007	0.28	1.0	ND	1	09/14/06	09/14/06	
1,2-Dibromoethane (EDB)	EPA 8260B	6114007	0.32	1.0	ND	1	09/14/06	09/14/06	
1,4-Dichlorobenzene	EPA 8260B	6114007	0.37	1.0	ND	1	09/14/06	09/14/06	
1,2-Dichlorobenzene	EPA 8260B	6I 14007	0.32	1.0	ND	1	09/14/06	09/14/06	
1,3-Dichlorobenzene	EPA 8260B	6114007	0.35	1.0	ND	1	09/14/06	09/14/06	
Dichlorodifluoromethane	EPA 8260B	6114007	0.79	1.0	ND	1	09/14/06	09/14/06	
1,2-Dichloroethane	EPA 8260B	6114007	0.28	0.50	ND	1	09/14/06	09/14/06	
1,1-Dichloroethane	EPA 8260B	6114007	0.27	1.0	ND	1	09/14/06	09/14/06	
1,1-Dichloroethene	EPA 8260B	6114007	0.42	1.0	ND	I	09/14/06	09/14/06	
cis-1,2-Dichloroethene	EPA 8260B	6114007	0.32	1.0	ND	1	09/14/06	09/14/06	
trans-1,2-Dichloroethene	EPA 8260B	6114007	0.27	1.0	ND	1	09/14/06	09/14/06	
1,2-Dichloropropane	EPA 8260B	6114007	0.35	1.0	ND	1	09/14/06	09/14/06	
2,2-Dichloropropane	EPA 8260B	6114007	0.34	1.0	ND	1	09/14/06	09/14/06	
cis-1,3-Dichloropropene	EPA 8260B	6114007	0.22	0.50	ND	1	09/14/06	09/14/06	
1,1-Dichloropropene	EPA 8260B	6114007	0.28	1.0	ND	1	09/14/06	09/14/06	
trans-1,3-Dichloropropene	EPA 8260B	6114007	0.32	0.50	ND	1	09/14/06	09/14/06	
Ethylbenzene	EPA 8260B	6114007	0.25	1.0	ND	1	09/14/06	09/14/06	
Hexachlorobutadiene	EPA 8260B	6114007	0.38	1.0	ND	1	09/14/06	09/14/06	
2-Hexanone	EPA 8260B	6114007	2.6	6.0	ND	1	09/14/06	09/14/06	
Iodomethane	EPA 8260B	6114007	1.0	2.0	ND	1	09/14/06	09/14/06	
Isopropylbenzene	EPA 8260B	6114007	0.25	1.0	ND	1	09/14/06	09/14/06	
m									

TestAmerica - Irvine, CA

Nicholas Marz For Michele Chamberlin

Project Manager

Pt 101806

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IP10724 < Page 18 of 51>

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

TAIT Environmental/Boeing

Project ID: Boeing C-6 Torrance 701 N. Parkcenter Drive

EM2727

Santa Ana, CA 92705 Report Number: IPI0724 Attention: Mehmet Pehlivan

Sampled: 09/08/06

Received: 09/08/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

			MDL	Reporting	Sample	Dilution	Date	Date	Data			
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers			
Sample ID: IP10724-09 (XMW-09_WG09	0806_0001 - Wat	er) - cont.	Sampled: 09/08/06									
Reporting Units: ug/l					•							
p-lsopropyltoluene	EPA 8260B	6114007	0.28	1.0	ND	1	09/14/06	09/14/06				
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	6114007	0.32	1.0	ND	ì	09/14/06	09/14/06				
Methylene chloride	EPA 8260B	6114007	0.70	1.0	1.3	1	09/14/06	09/14/06				
4-Methyl-2-pentanone (MIBK)	EPA 8260B	6114007	3.5	5.0	ND	1	09/14/06	09/14/06				
n-Propylbenzene	EPA 8260B	6114007	0.27	1.0	ND	1	09/14/06	09/14/06				
Styrene	EPA 8260B	6114007	0.16	1.0	ND	1	09/14/06	09/14/06				
1,1,1,2-Tetrachloroethane	EPA 8260B	6114007	0.27	1.0	ND	1	09/14/06	09/14/06				
1,1,2,2-Tetrachloroethane	EPA 8260B	6114007	0.24	1.0	ND	1	09/14/06	09/14/06				
Tetrachloroethene	EPA 8260B	6114007	0.32	1.0	61	1 .	09/14/06	09/14/06				
Tetrahydrofuran (THF)	EPA 8260B	6114007	2.3	10	ND	1 -	09/14/06	09/14/06				
Toluene	EPA 8260B	6114007	0.36	1.0	ND	1	09/14/06	09/14/06				
1,2,3-Trichlorobenzene	EPA 8260B	6114007	0.45	1.0	ND	1	09/14/06	09/14/06				
1,2,4-Trichlorobenzene	EPA 8260B	6114007	0.48	1.0	ND	1	09/14/06	09/14/06				
1,1,2-Trichloroethane	EPA 8260B	6114007	0.30	1.0	ND	1	09/14/06	09/14/06				
1,1,1-Trichloroethane	EPA 8260B	6114007	0.30	1.0	ND	1	09/14/06	09/14/06				
Trichloroethene	EPA 8260B	6114007	0.26	1.0	45	1	09/14/06	09/14/06				
Trichlorofluoromethane	EPA 8260B	6114007	0.34	2.0	ND	1	09/14/06	09/14/06				
1,2,3-Trichloropropane	EPA 8260B	6114007	0.40	1.0	ND	1.	09/14/06	09/14/06				
1,2,4-Trimethylbenzene	EPA 8260B	6114007	0.23	1.0	ND	1	09/14/06	09/14/06				
1,3,5-Trimethylbenzene	EPA 8260B	6114007	0.26	1.0	ND	1	09/14/06	09/14/06				
Vinyl acetate	EPA 8260B	6114007	1.7	6.0	ND	I	09/14/06	09/14/06				
Vinyl chloride	EPA 8260B	6I14007	0.26	0.50	ND	1	09/14/06	09/14/06				
Xylenes, Total	EPA 8260B	6I14007	0.90	1.0	ND	I	09/14/06	09/14/06				
Surrogate: 4-Bromofluorobenzene (80-120%	6)				103 %							
Surrogate: Dibromofluoromethane (80-1209	%)				100 %							
Surrogate: Toluene-d8 (80-120%)					102 %							

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

101806

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

TAIT Environmental/Boeing

Project ID: Boeing C-6 Torrance

EM2727

701 N. Parkcenter Drive Santa Ana, CA 92705 Attention: Mehmet Pehlivan

Report Number: IP10724

Sampled: 09/08/06

Received: 09/08/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPI0724-10 (MWC006_)	VG090806 0001 - Wa	ter)			Sample	d: 09/08/0	16		
Reporting Units: ug/l		,			Sample	u: 09/00/0	70		
Benzene	EPA 8260B	6114007	0.28	1.0	37	1	09/14/06	09/14/06	
Bromobenzene	EPA 8260B	6114007	0.27	1.0	ND	Ī	09/14/06	09/14/06	
Bromochloromethane	EPA 8260B	6114007	0.32	1.0	ND	1	09/14/06	09/14/06	
Bromodichloromethane	EPA 8260B	6114007	0.30	1.0	ND	1	09/14/06	09/14/06	
Bromoform	EPA 8260B	6114007	0.32	1.0	ND	1	09/14/06	09/14/06	
Bromomethane	EPA 8260B	6114007	0.42	1.0	ND	1	09/14/06	09/14/06	
n-Butylbenzene	EPA 8260B	6114007	0.37	1.0	ND	I	09/14/06	09/14/06	
sec-Butylbenzene	EPA 8260B	6114007	0.25	1.0	ND	1	09/14/06	09/14/06	
tert-Butylbenzene	EPA 8260B	6114007	0.22	1.0	ND	ì	09/14/06	09/14/06	
Carbon Disulfide	EPA 8260B	6114007	0.48	1.0	1.8	1	09/14/06	09/14/06	
Carbon tetrachloride	EPA 8260B	6114007	0.28	0.50	ND	1	09/14/06	09/14/06	
Chlorobenzene	EPA 8260B	6114007	0.36	1.0	ND	1	09/14/06	09/14/06	
Chloroethane	EPA 8260B	6114007	0.40	2.0	ND	1	09/14/06	09/14/06	
Chloroform	EPA 8260B	6114007	0.33	1.0	42	1	09/14/06	09/14/06	
Chloromethane	EPA 8260B	6114007	0.30	2.0	ND	1	09/14/06	09/14/06	
2-Chlorotoluene	EPA 8260B	6114007	0.28	1.0	ND	1	09/14/06	09/14/06	
4-Chlorotoluene	EPA 8260B	6114007	0.29	1.0	ND	. 1	09/14/06	09/14/06	
1,2-Dibromo-3-chloropropane	EPA 8260B	6114007	0.92	2.0	ND	1	09/14/06	09/14/06	
Dibromochloromethane	EPA 8260B	6114007	0.28	1.0	ND	1	09/14/06	09/14/06	
1,2-Dibromoethane (EDB)	EPA 8260B	6114007	0.32	1.0	ND	1	09/14/06	09/14/06	
1,4-Dichlorobenzene	EPA 8260B	6114007	0.37	1.0	ND	1	09/14/06	09/14/06	
1,2-Dichlorobenzene	EPA 8260B	6114007	0.32	1.0	ND	1	09/14/06	09/14/06	
1,3-Dichlorobenzene	EPA 8260B	6114007	0.35	1.0	ND	1	09/14/06	09/14/06	
Dichlorodifluoromethane	EPA 8260B	6114007	0.79	1.0	ND	1	09/14/06	09/14/06	
1,2-Dichloroethane	EPA 8260B	6114007	0.28	0.50	83	1	09/14/06	09/14/06	
trans-1,2-Dichloroethene	EPA 8260B	6114007	0.27	1.0	160	. 1	09/14/06	09/14/06	
1,2-Dichloropropane	EPA 8260B	6114007	0.35	1.0	ND	1	09/14/06	09/14/06	
2,2-Dichloropropane	EPA 8260B	6114007	0.34	1.0	ND	1	09/14/06	09/14/06	
cis-1,3-Dichloropropene	EPA 8260B	6114007	0.22	0.50	ND	1	09/14/06	09/14/06	
1,1-Dichloropropene	EPA 8260B	6114007	0.28	1.0	ND	I	09/14/06	09/14/06	
trans-1,3-Dichloropropene	EPA 8260B	6114007	0.32	0.50	ND	1	09/14/06	09/14/06	
Ethylbenzene	EPA 8260B	6114007	0.25	1.0	22	1	09/14/06	09/14/06	
Hexachlorobutadiene	EPA 8260B	6114007	0.38	1.0	ND	1	09/14/06	09/14/06	
2-Hexanone	EPA 8260B	6114007	2.6	6.0	ND	1	09/14/06	09/14/06	
Iodomethane	EPA 8260B	6114007	1.0	2.0	ND	1	09/14/06	09/14/06	
Isopropylbenzene	EPA 8260B	6114007	0.25	1.0	0.34	1	09/14/06	09/14/06	J
p-Isopropyltoluene	EPA 8260B	6114007	0.28	1.0	ND	1	09/14/06	09/14/06	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	6114007	0.32	1.0	ND	1	09/14/06	09/14/06	
Methylene chloride	EPA 8260B	6114007	0.70	1.0	72	1	09/14/06	09/14/06	
n-Propylbenzene	EPA 8260B	6114007	0.27	1.0	ND	1	09/14/06	09/14/06	
Styrene	EPA 8260B	6114007	0.16	1.0	ND	1	09/14/06	09/14/06	

TestAmerica - Irvine, CA

Nicholas Marz For Michele Chamberlin

Project Manager

7 101806

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, $except\ in\ full,\ without\ written\ permission\ from\ TestAmerica.$

IPI0724 <Page 20 of 51>

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Project ID: Boeing C-6 Torrance

EM2727

Sampled: 09/08/06

701 N. Parkcenter Drive Santa Ana, CA 92705 Attention: Mehmet Pehlivan

Report Number: IPI0724

Received: 09/08/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IPI0724-10 (MWC006_W	/G090806_0001 - Wa	ter) - cont.			Sample	ed: 09/08/0	06		
Reporting Units: ug/l									
1,1,1,2-Tetrachloroethane	EPA 8260B	6114007	0.27	1.0	ND	1	09/14/06	09/14/06	
1,1,2,2-Tetrachloroethane	EPA 8260B	6114007	0.24	1.0	ND	1	09/14/06	09/14/06	
Tetrachloroethene	EPA 8260B	6114007	0.32	1.0	0.45	1	09/14/06	09/14/06	J
Tetrahydrofuran (THF)	EPA 8260B	6114007	2.3	10	86	1	09/14/06	09/14/06	
1,2,3-Trichlorobenzene	EPA 8260B	6114007	0.45	1.0	ND	1	09/14/06	09/14/06	
1,2,4-Trichlorobenzene	EPA 8260B	6114007	0.48	1.0	ND	1	09/14/06	09/14/06	
1,1,2-Trichloroethane	EPA 8260B	6114007	0.30	1.0	64	1	09/14/06	09/14/06	
1,1,1-Trichloroethane	EPA 8260B	6I14007	0.30	1.0	180	1	09/14/06	09/14/06	
Trichlorofluoromethane	EPA 8260B	6114007	0.34	2.0	ND	1	09/14/06	09/14/06	
1,2,3-Trichloropropane	EPA 8260B	6114007	0.40	1.0	ND	1	09/14/06	09/14/06	
1,2,4-Trimethylbenzene	EPA 8260B	6114007	0.23	1.0	0.45	1	09/14/06	09/14/06	J
1,3,5-Trimethylbenzene	EPA 8260B	6114007	0.26	1.0	ND	1	09/14/06	09/14/06	
Vinyl acetate	EPA 8260B	6114007	1.7	6.0	ND	l	09/14/06	09/14/06	
Xylenes, Total	EPA 8260B	6I14007	0.90	1.0	190	1	09/14/06	09/14/06	
Surrogate: 4-Bromofluorobenzene (80-	120%)				103 %				
Surrogate: Dibromofluoromethane (80-	-120%)				98 %				
Surrogate: Toluene-d8 (80-120%)					108 %				

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

T 101806

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

701 N. Parkcenter Drive

Santa Ana, CA 92705

Project ID: Boeing C-6 Torrance

EM2727

Report Number: IP10724

Sampled: 09/08/06

Received: 09/08/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPI0724-10RE1 (MWC006	6_WG090806_0001 -	Water) - con	t.		Sample	d: 09/08/0)6		
Reporting Units: ug/l					•				
Acetone	EPA 8260B	6115004	4 50	1000	17000	100	09/15/06	09/15/06	
2-Butanone (MEK)	EPA 8260B	6115004	380	500	100000	J 100	09/15/06	09/15/06	E
1,1-Dichloroethane	EPA 8260B	6115004	27	100	890	100	09/15/06	09/15/06	
1,1-Dichloroethene	EPA 8260B	6115004	42	100	2900	100	09/15/06	09/15/06	
cis-1,2-Dichloroethene	EPA 8260B	6115004	32	100	800	100	09/15/06	09/15/06	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	6115004	350	500	1900	100	09/15/06	09/15/06	
Toluene	EPA 8260B	6115004	36	100	6000	100	09/15/06	09/15/06	
Trichloroethene	EPA 8260B	6115004	26	100	1800	100	09/15/06	09/15/06	
Vinyl chloride	EPA 8260B	6115004	26	50	6700	100	09/15/06	09/15/06	
Surrogate: 4-Bromofluorobenzene (80-1	(20%)				100 %				
Surrogate: Dibromofluoromethane (80-	120%)				107 %				
Surrogate: Toluene-d8 (80-120%)					100 %				

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

h 101806

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Santa Ana, CA 92705 Attention: Mehmet Pehlivan Project ID: Boeing C-6 Torrance

EM2727

Report Number: IP10724

Sampled: 09/08/06

Received: 09/08/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPI0724-10RE2 (MWC006_V	WG090806_0001 -	Water) - con	t.		Sample	d: 09/08/0)6		Н
Reporting Units: ug/l					_				
2-Butanone (MEK)	EPA 8260B	6124007	1900	2500	130000	J 500	09/24/06	09/24/06	
Surrogate: 4-Bromofluorobenzene (80-120	0%)				108 %	•			
Surrogate: Dibromofluoromethane (80-12)	0%)				103 %				
Surrogate: Toluene-d8 (80-120%)					106 %				

TestAmerica - Irvine, CANicholas Marz For Michele Chamberlin
Project Manager

2/0/80%

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

Project ID: Boeing C-6 Torrance EM2727

701 N. Parkcenter Drive Santa Ana, CA 92705

Report Number: IPI0724

Sampled: 09/08/06

Received: 09/08/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1PI0724-11 (CMW026_WG090806_0001 - Water)				Sampled: 09/08/06					
Reporting Units: ug/l			Sample	. u. 02/00/	J. C.				
Acetone	EPA 8260B	6115004	4.5	10	ND	1	09/15/06	09/15/06	
Benzene	EPA 8260B	6115004	0.28	1.0	0.34	1	09/15/06	09/15/06	J
Bromobenzene	EPA 8260B	6115004	0.27	1.0	ND	I	09/15/06	09/15/06	
Bromochloromethane	EPA 8260B	6115004	0.32	1.0	ND	1	09/15/06	09/15/06	
Bromodichloromethane	EPA 8260B	6115004	0.30	1.0	ND	1	09/15/06	09/15/06	
Bromoform	EPA 8260B	6115004	0.32	1.0	ND	I	09/15/06	09/15/06	
Bromomethane	EPA 8260B	6115004	0.42	1.0	ND	I	09/15/06	09/15/06	
2-Butanone (MEK)	EPA 8260B	6115004	3.8	5.0	ND	1	09/15/06	09/15/06	
n-Butylbenzene	EPA 8260B	6115004	0.37	1.0	ND	I	09/15/06	09/15/06	
sec-Butylbenzene	EPA 8260B	6115004	0.25	1.0	ND	I	09/15/06	09/15/06	
tert-Butylbenzene	EPA 8260B	6115004	0.22	1.0	ND	1	09/15/06	09/15/06	
Carbon Disulfide	EPA 8260B	6115004	0.48	1.0	ND	1	09/15/06	09/15/06	
Carbon tetrachloride	EPA 8260B	6115004	0.28	0.50	ND	1	09/15/06	09/15/06	
Chlorobenzene	EPA 8260B	6115004	0.36	1.0	ND	I	09/15/06	09/15/06	
Chloroethane	EPA 8260B	6115004	0.40	2.0	0.62	I	09/15/06	09/15/06	J ·
Chloroform	EPA 8260B	6115004	0.33	1.0	ND	I	09/15/06	09/15/06	
Chloromethane	EPA 8260B	6115004	0.30	2.0	ND	I	09/15/06	09/15/06	
2-Chlorotoluene	EPA 8260B	6115004	0.28	1.0	ND	I	09/15/06	09/15/06	
4-Chlorotoluene	EPA 8260B	6115004	0.29	1.0	ND	I	09/15/06	09/15/06	
I,2-Dibromo-3-chloropropane	EPA 8260B	6115004	0.92	2.0	ND	I	09/15/06	09/15/06	
Dibromochloromethane	EPA 8260B	6115004	0.28	1.0	ND	I	09/15/06	09/15/06	
1,2-Dibromoethane (EDB)	EPA 8260B	6115004	0.32	1.0	ND	1	09/15/06	09/15/06	
1,4-Dichlorobenzene	EPA 8260B	6115004	0.37	1.0	ND	I	09/15/06	09/15/06	
1,2-Dichlorobenzene	EPA 8260B	6115004	0.32	1.0	ND	I	09/15/06	09/15/06	
1,3-Dichlorobenzene	EPA 8260B	6115004	0.35	1.0	ND	1	09/15/06	09/15/06	
Dichlorodifluoromethane	EPA 8260B	6115004	0.79	1.0	ND	1	09/15/06	09/15/06	
1,2-Dichloroethane	EPA 8260B	6115004	0.28	0.50	1.9	1	09/15/06	09/15/06	
1,1-Dichloroethane	EPA 8260B	6115004	0.27	1.0	4.1	1	09/15/06	09/15/06	
1,1-Dichloroethene	EPA 8260B	6115004	0.42	1.0	93	1	09/15/06	09/15/06	
trans-1,2-Dichloroethene	EPA 8260B	6I I 5004	0.27	1.0	3.1	I	09/15/06	09/15/06	
I,2-Dichloropropane	EPA 8260B	6115004	0.35	1.0	ND	I	09/15/06	09/15/06	
2,2-Dichloropropane	EPA 8260B	6115004	0.34	1.0	ND	I	09/15/06	09/15/06	
cis-1,3-Dichloropropene	EPA 8260B	6115004	0.22	0.50	ND	1	09/15/06	09/15/06	
I, I-Dichloropropene	EPA 8260B	6115004	0.28	1.0	ND	I	09/15/06	09/15/06	
trans-1,3-Dichloropropene	EPA 8260B	6115004	0.32	0.50	ND	1	09/15/06	09/15/06	
Ethylbenzene	EPA 8260B	6I 15004	0.25	1.0	ND	I	09/15/06	09/15/06	
Hexachlorobutadiene	EPA 8260B	6I15004	0.38	1.0	ND	1	09/15/06	09/15/06	
2-Hexanone	EPA 8260B	6115004	2.6	6.0	ND	1	09/15/06	09/15/06	
lodomethane	EPA 8260B	6115004	1.0	2.0	ND	1	09/15/06	09/15/06	
lsopropylbenzene	EPA 8260B	6115004	0.25	1.0	ND	I	09/15/06	09/15/06	
p-lsopropyltoluene	EPA 8260B	6115004	0.28	1.0	ND	I	09/15/06	09/15/06	

TestAmerica - Irvine, CA

Nicholas Marz For Michele Chamberlin

Project Manager

A 101806

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IPI0724 < Page 24 of 51>

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

701 N. Parkcenter Drive Santa Ana, CA 92705

Project ID: Boeing C-6 Torrance

EM2727

Report Number: IPI0724

Sampled: 09/08/06

Received: 09/08/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Resuit	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IP10724-11 (CMW026_WG0	90806_0001 - Wai	er) - cont.			Sample	ed: 09/08/0)6		
Reporting Units: ug/l					-				
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	6115004	0.32	1.0	ND	1	09/15/06	09/15/06	
Methylene chloride	EPA 8260B	6115004	0.70	1.0	ND	1	09/15/06	09/15/06	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	6115004	3.5	5.0	ND	1	09/15/06	09/15/06	
n-Propylbenzene	EPA 8260B	6115004	0.27	1.0	ND	1	09/15/06	09/15/06	
Styrene	EPA 8260B	6115004	0.16	1.0	ND	1	09/15/06	09/15/06	
1,1,1,2-Tetrachloroethane	EPA 8260B	6115004	0.27	1.0	ND	1	09/15/06	09/15/06	
1,1,2,2-Tetrachloroethane	EPA 8260B	6115004	0.24	1.0	ND	1	09/15/06	09/15/06	
Tetrachloroethene	EPA 8260B	6115004	0.32	1.0	ND	. 1	09/15/06	09/15/06	
Tetrahydrofuran (THF)	EPA 8260B	6115004	2.3	10	ND	1	09/15/06	09/15/06	
Toluene	EPA 8260B	6115004	0.36	1.0	ND	1	09/15/06	09/15/06	
1,2,3-Trichlorobenzene	EPA 8260B	6115004	0.45	1.0	ND	1	09/15/06	09/15/06	
1,2,4-Trichlorobenzene	EPA 8260B	6115004	0.48	1.0	ND	1	09/15/06	09/15/06	
1,1,2-Trichloroethane	EPA 8260B	6115004	0.30	1.0	ND	1	09/15/06	09/15/06	
1,1,1-Trichloroethane	EPA 8260B	6115004	0.30	1.0	ND	1	09/15/06	09/15/06	
Trichloroethene	EPA 8260B	6115004	0.26	1.0	47	1	09/15/06	09/15/06	
Trichlorofluoromethane	EPA 8260B	6115004	0.34	2.0	ND	1	09/15/06	09/15/06	
1,2,3-Trichloropropane	EPA 8260B	6115004	0.40	1.0	ND	1	09/15/06	09/15/06	
1,2,4-Trimethylbenzene	EPA 8260B	6115004	0.23	1.0	ND	l	09/15/06	09/15/06	
1,3,5-Trimethylbenzene	EPA 8260B	6115004	0.26	1.0	ND	1	09/15/06	09/15/06	
Vinyl acetate	EPA 8260B	6115004	1.7	6.0	ND	1	09/15/06	09/15/06	
Vinyl chloride	EPA 8260B	6115004	0.26	0.50	110	1	09/15/06	09/15/06	
Xylenes, Total	EPA 8260B	6115004	0.90	1.0	ND	1	09/15/06	09/15/06	
Surrogate: 4-Bromofluorobenzene (80-120%)					101 %				
Surrogate: Dibromofluoromethane (80-120%)					119 %				
Surrogate: Toluene-d8 (80-120%)			100 %			•			

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

K10806

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IPI0724 <Page 25 of 51>

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

701 N. Parkcenter Drive Santa Ana, CA 92705 Project ID: Boeing C-6 Torrance

EM2727

Report Number: 1P10724

Sampled: 09/08/06

Received: 09/08/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPI0724-11RE1 (CMW026	t.		Sample	ed: 09/08/0)6				
Reporting Units: ug/l cis-1,2-Dichloroethene	EDA 02/0D	(17.6004	1.2	. 40	700		000500	00/15/04	
,	EPA 8260B	6115004	1.3	4.0	580	4	09/15/06	09/15/06	
Surrogate: 4-Bromofluorobenzene (80-1	20%)				100 %				
Surrogate: Dibromofluoromethane (80-)	120%)				118%				
Surrogate: Toluene-d8 (80-120%)					101 %				

TestAmerica - Irvine, CANicholas Marz For Michele Chamberlin
Project Manager

M 101805

LDC #: 15615A1	VALIDATION COMPLETENESS WORKSHEET	Date: 10/18/0 G
SDG #: IPI0724	EPA Region 1 - Tier 1	Page: / of /
_aboratory: <u>Test America</u>	_	Reviewer:
		2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	Δ	Sampling dates: 9/8/06
11.	GC/MS Instrument performance check	N	/ /
111.	Initial calibration	N	
IV.	Continuing calibration	N	
V.	Blanks	5 X V	
VI.	Surrogate spikes	4	
VII.	Matrix spike/Matrix spike duplicates	X	Thw - 10- WG090806-0001
VIII.	Laboratory control samples	Ž	LCY
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	N	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	ν,	
XVII.	Field blanks	N	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

1 alist

	waun				 	
1 1	TMW_15_WG090806_0001 /	111	6114007-BUX1	21	31	
2 l	XMW-09_WG090806_0001 ✓	127	6I15004-BUX1	22	32	
3 l	MW MC006_WG090806_0001 /	13 3	6124007-BUE	23	33	
4 2	CMW026_WG090806_0001	14		24	 34	
5 v	MW 6066 - WG 690806-000	115 R	E -	25	35	
63	MWC006-WG090806-0001	#6E	<u></u>	26	36	
72	CM W026-WG090806-0	51 0 1	re I	27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	

LDC #:	15615A/
	1910724

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:	
Reviewer:	_ 1=1
2nd Reviewer:	<i>A</i>

All circled dates have exceeded the technical holding times.

METHOD : GC/	MS VOA (EPA S	SW 846 Method	8260B)					
Sample ID	Matrix	Preserved	Sampling	Date	Extraction date	Analysis date	Total # of Days	Qualifi
6	W	yes	9/8/	06		9/24/06	16	1/4
		7	, , , , , , , , , , , , , , , , , , ,				QUA	+ M
			·					nly
<u> </u>		·	·					0
			-					
		·						
·								
	. ,						·	
		·			·			
	·							
		·						
, , , , ,								
					·			

TECHNICAL HOLDING TIME CRITERIA

Water unpreserved:

Aromatic within 7 days, non-aromatic within 14 days of sample collection.

Water preserved:

Both within 14 days of sample collection. Both within 14 days of sample collection.

Soil:

_	7
615A	1010
5	¥: 1
LDC #	SDG #

VALIDATION FINDINGS WORKSHEET

/ot	لعك	,
Page:	Reviewer:	2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank analyzed at least once every 12 hours for each matrix and concentration? Was a method blank associated with every sample in this SDG? N N/A

Was there contamination in the method blanks? If yes, please see the qualifications below. N N/A

Blank analysis date: Conc. units: Mg :

Associated Samples:

				Calliples.				
Compound	Blank ID			S	Sample identification	tion		
	6114007- R1K1	2						
Tetrahydwo huran Methylana Chiola	5.0	1_						
Acetone								
					\ \		٠	
			,					
·								
CROL.								

Blank analysis date: Conc. units:

Associated Samples:

	i i						
Compound	Blank ID		S.S	Sample Identification	tlon		
Methylene chloride							
Acetone							
		•					
			***			ļ	
[CHQL						-	

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC #: 15615A SDG #: 1910124

VALIDATION FINDINGS WORKSHEET Compound Quantitation and CRQLs

Page:

2nd Reviewer: Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N M/A

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? **∀**/**Z**) **Z** ≻

		`												
Qualifications	A act	,												
	1/5													
Associated Samples								·						
	72													
bи	al Pane.	Š			-			7				-		
Findi	exceeded and fame													
QI									-		,		-	
Sample ID	\$				7									
Date			- /	/										
#			7											

Comments: See sample calculation verification worksheet for recalculations

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg C-6

Collection Date:

September 11, 2006

LDC Report Date:

October 18, 2006

Matrix:

Water

Parameters:

Volatiles

Validation Level:

Tier 2

Laboratory:

TestAmerica

Sample Delivery Group (SDG): IPI0893

Sample Identification

CMW002_WG091106_0001 MWB027_WG091106_0001 IRZCMW002_WG091106_0001 CMW002_WG091106_0001RE IRZCMW002_WG091106_0001RE

Introduction

This data review covers 5 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination (r^2) were greater than or equal to 0.990.

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/12/06	2-Butanone	0.042 (≥0.05)	CMW002_WG091106_0001 6l16020-Blank	J (all detects) UJ (all non-detects)	Α
9/18/06	2-Butanone	0.039 (≥0.05)	MWB027_WG091106_0001 IRZCMW002_WG091106_0001 6l22013-Blank	J (all detects) UJ (all non-detects)	Α

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
9/16/06	Chloromethane	28	CMW002_WG091106_0001 6l16020-Blank	J (all detects) UJ (all non-detects)	Α
	Acetone	40		J (all detects) UJ (all non-detects)	

All of the continuing calibration RRF values were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/20/06	2-Butanone	0.042 (≥0.05)	MWB027_WG091106_0001 IRZCMW002_WG091106_0001 6l22013-Blank	J (all detects) UJ (all non-detects)	A

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
6l22013-Blank	9/20/06	Tetrahydrofuran	3.46 ug/L	MWB027_WG091106_0001 IRZCMW002_WG091106_0001

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg C-6 Volatiles - Data Qualification Summary - SDG IPI0893

SDG	Sample	Compound	Flag	A or P	Reason
IPI0893	CMW002_WG091106_0001 MWB027_WG091106_0001 IRZCMW002_WG091106_0001	2-Butanone	J (all detects) UJ (all non-detects)	А	Initial calibration (RRF)
IPI0893	CMW002_WG091106_0001	Chloromethane Acetone	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	А	Continuing calibration (%D)
IP10893	MWB027_WG091106_0001 IRZCMW002_WG091106_0001	2-Butanone	J (all detects) UJ (all non-detects)	А	Continuing calibration (RRF)

Boeing Realty Corp., Bldg C-6 Volatiles - Laboratory Blank Data Qualification Summary - SDG IPI0893

No Sample Data Qualified in this SDG

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Project ID: Boeing C-6 Torrance

EM2727

Report Number: IPI0893

Sampled: 09/11/06

Santa Ana, CA 92705 Attention: Mehmet Pehlivan Received: 09/11/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample D Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IP10893-05 (CMW00	2_WG091106_0001 - Wat	er)							
Reporting Units: ug/l									
Acetone	EPA 8260B	6I16020	90	200	LN DN	20	09/16/06	09/16/06	C
Benzene	EPA 8260B	6I16020	5.6	20	67	20	09/16/06	09/16/06	
Bromobenzene	EPA 8260B	6I16020	5.4	20	ND	20	09/16/06	09/16/06	
Bromochloromethane	EPA 8260B	6I16020	6.4	20	ND	20	09/16/06	09/16/06	
Bromodichloromethane	EPA 8260B	6I16020	6.0	20	ND	20	09/16/06	09/16/06	
Bromoform	EPA 8260B	6116020	6.4	20	ND	20	09/16/06	09/16/06	
Bromomethane	EPA 8260B	6I16020	8.4	20	ND	20	09/16/06	09/16/06	
2-Butanone (MEK)	EPA 8260B	6I16020	76	100	ND UJ	20	09/16/06	09/16/06	
n-Butylbenzene	EPA 8260B	6I16020	7.4	20	ND	20	09/16/06	09/16/06	
sec-Butylbenzene	EPA 8260B	6I16020	5.0	20	ND	20	09/16/06	09/16/06	
tert-Butylbenzene	EPA 8260B	6I16020	4.4	20	ND	20	09/16/06	09/16/06	
Carbon Disulfide	EPA 8260B	6I16020	9.6	20	ND	20	09/16/06	09/16/06	
Carbon tetrachloride	EPA 8260B	6I16020	5.6	10	ND	20	09/16/06	09/16/06	
Chloroethane	EPA 8260B	6116020	8.0	40	ND	20	09/16/06	09/16/06	
Chloroform	EPA 8260B	6116020	6.6	20	ND	20	09/16/06	09/16/06	
Chloromethane	EPA 8260B	6116020	6.0	40	ND UT	20	09/16/06	09/16/06	
2-Chlorotoluene	EPA 8260B	6I16020	5.6	20	ND	20	09/16/06	09/16/06	
4-Chlorotoluene	EPA 8260B	6I16020	5.8	20	ND	20	09/16/06	09/16/06	
1,2-Dibromo-3-chloropropane	EPA 8260B	6I16020	18	40	ND	20	09/16/06	09/16/06	
Dibromochloromethane	EPA 8260B	6I16020	5.6	20	ND	20	09/16/06	09/16/06	
1,2-Dibromoethane (EDB)	EPA 8260B	6I16020	6.4	20	ND	20	09/16/06	09/16/06	
1,4-Dichlorobenzene	EPA 8260B	6I16020	7.4	20	12	20	09/16/06	09/16/06	J
1,2-Dichlorobenzene	EPA 8260B	6I16020	6.4	20 .	ND	20	09/16/06	09/16/06	
1,3-Dichlorobenzene	EPA 8260B	6116020	7.0	20	ND	20	09/16/06	09/16/06	
Dichlorodifluoromethane	EPA 8260B	6116020	16	20	ND	20	09/16/06	09/16/06	
1,2-Dichloroethane	EPA 8260B	6I16020	5.6	10	ND	20	09/16/06	09/16/06	
1,1-Dichloroethane	EPA 8260B	6I16020	5.4	20	ND	20	09/16/06	09/16/06	
1,1-Dichloroethene	EPA 8260B	6116020	8.4	20	ND	20	09/16/06	09/16/06	
cis-1,2-Dichloroethene	EPA 8260B	6I16020	6.4	20	ND	20	09/16/06	09/16/06	
trans-1,2-Dichloroethene	EPA 8260B	6I16020	5.4	20	ND	20	09/16/06	09/16/06	
1,2-Dichloropropane	EPA 8260B	6116020	7.0	20	ND	20	09/16/06	09/16/06	
2,2-Dichloropropane	EPA 8260B	6I16020	6.8	20	ND	20	09/16/06	09/16/06	
cis-1,3-Dichloropropene	EPA 8260B	6116020	4.4	10	ND	20	09/16/06	09/16/06	
1,1-Dichloropropene	EPA 8260B	6I16020	5.6	20	ND	20	09/16/06	09/16/06	
trans-1,3-Dichloropropene	EPA 8260B	6I16020	6.4	10	ND	20	09/16/06	09/16/06	
Ethylbenzene	EPA 8260B	6I16020	5.0	20	ND	20	09/16/06	09/16/06	
Hexachlorobutadiene	EPA 8260B	6116020	7.6	20	ND	20	09/16/06	09/16/06	
2-Hexanone	EPA 8260B	6I16020	52	120	ND	20	09/16/06	09/16/06	
Iodomethane	EPA 8260B	6I16020	20	40	ND	20	09/16/06	09/16/06	
Isopropylbenzene	EPA 8260B	6116020	5.0	20	ND	20	09/16/06	09/16/06	
p-Isopropyltoluene	EPA 8260B	6116020	5.6	20	ND	20	09/16/06	09/16/06	
TestAmerica - Irvine, CA									

TestAmerica - Irvine, CA

Michele Chamberlin

Project Manager

A 101806

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

701 N. Parkcenter Drive

Santa Ana, CA 92705

Project ID: Boeing C-6 Torrance

EM2727

Report Number: IPI0893

Sampled: 09/11/06

Received: 09/11/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

A. Perk	26.4.2	5	MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IPI0893-05 (CMW002_WG	091106_0001 - Wa	ter) - cont.							
Reporting Units: ug/l									
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	6116020	6.4	20	ND	20	09/16/06	09/16/06	
Methylene chloride	EPA 8260B	6I16020	14	20	36	20	09/16/06	09/16/06	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	6116020	70	100	ND	20	09/16/06	09/16/06	
n-Propylbenzene	EPA 8260B	6I16020	5.4	20	ND	20	09/16/06	09/16/06	
Styrene	EPA 8260B	6116020	3.2	20	ND	20	09/16/06	09/16/06	
1,1,1,2-Tetrachloroethane	EPA 8260B	6116020	5.4	20	ND	20	09/16/06	09/16/06	
1,1,2,2-Tetrachloroethane	EPA 8260B	6I16020	4.8	20	ND	20	09/16/06	09/16/06	
Tetrachloroethene	EPA 8260B	6116020	6.4	20	ND	20	09/16/06	09/16/06	
Tetrahydrofuran (THF)	EPA 8260B	6116020	46	200	ND	20	09/16/06	09/16/06	
Toluene	EPA 8260B	6116020	7.2	20	ND	20	09/16/06	09/16/06	
1,2,3-Trichlorobenzene	EPA 8260B	6I16020	9.0	20	ND	20	09/16/06	09/16/06	
1,2,4-Trichlorobenzene	EPA 8260B	6116020	9.6	20	ND	20	09/16/06	09/16/06	
1,1,2-Trichloroethane	EPA 8260B	6116020	6.0	20	ND	20	09/16/06	09/16/06	
1,1,1-Trichloroethane	EPA 8260B	6I16020	6.0	20	ND	20	09/16/06	09/16/06	
Trichloroethene	EPA 8260B	6116020	5.2	20	410	20	09/16/06	09/16/06	
Trichlorofluoromethane	EPA 8260B	6116020	6.8	40	ND	20	09/16/06	09/16/06	
1,2,3-Trichloropropane	EPA 8260B	6116020	8.0	20	ND	20	09/16/06	09/16/06	
1,2,4-Trimethylbenzene	EPA 8260B	6I16020	4.6	20	ND	20	09/16/06	09/16/06	
1,3,5-Trimethylbenzene	EPA 8260B	6116020	5.2	20	ND	20	09/16/06	09/16/06	
Vinyl acetate	EPA 8260B	6116020	34	120	ND	20	09/16/06	09/16/06	
Vinyl chloride	EPA 8260B	6116020	5.2	10	ND	20	09/16/06	09/16/06	
Xylenes, Total	EPA 8260B	6116020	18	20	ND	20	09/16/06	09/16/06	
Surrogate: 4-Bromofluorobenzene (80-120	0%)				102 %				
Surrogate: Dibromofluoromethane (80-12	0%)				119 %				
Surrogate: Toluene-d8 (80-120%)					100 %				

TestAmerica - Irvine, CAMichele Chamberlin
Project Manager

T 10/80)

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

Project ID: Boeing C-6 Torrance

701 N. Parkcenter Drive

EM2727

Sampled: 09/11/06

Santa Ana, CA 92705

Report Number: IPI0893

Received: 09/11/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPI0893-05RE1 (CMW002_V	WG091106_0001 -	Water) - con	t.						
Reporting Units: ug/l									
Chlorobenzene	EPA 8260B	6117015	36	100	9700	100	09/17/06	09/17/06	
Surrogate: 4-Bromofluorobenzene (80-120)%)				100 %				
Surrogate: Dibromofluoromethane (80-12	0%)				99 %				
Surrogate: Toluene-d8 (80-120%)					100 %				

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Project ID: Boeing C-6 Torrance

EM2727

Sampled: 09/11/06

Santa Ana, CA 92705 Attention: Mehmet Pehlivan Report Number: IPI0893

Received: 09/11/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPI0893-07 (MWB027_\	WG091106 0001 - Wat	er)							
Reporting Units: ug/I		~1)							
Acetone	EPA 8260B	6I20013	4.5	10	ND	1	09/20/06	09/20/06	
Benzene	EPA 8260B	6I20013	0.28	1.0	ND	1	09/20/06	09/20/06	
Bromobenzene	EPA 8260B	6I20013	0.27	1.0	ND	1	09/20/06	09/20/06	
Bromochloromethane	EPA 8260B	6120013	0.32	1.0	ND	1	09/20/06	09/20/06	
Bromodichloromethane	EPA 8260B	6I20013	0.30	1.0	ND	1	09/20/06	09/20/06	
Bromoform	EPA 8260B	6I20013	0.32	1.0	ND	1	09/20/06	09/20/06	
Bromomethane	EPA 8260B	6I20013	0.42	1.0	ND	1	09/20/06	09/20/06	
2-Butanone (MEK)	EPA 8260B	6I20013	3.8	5.0	ND U	J 1	09/20/06	09/20/06	
n-Butylbenzene	EPA 8260B	6I20013	0.37	1.0	ND	1	09/20/06	09/20/06	
sec-Butylbenzene	EPA 8260B	6I20013	0.25	1.0	ND	1	09/20/06	09/20/06	
tert-Butylbenzene	EPA 8260B	6I20013	0.22	1.0	ND	1	09/20/06	09/20/06	
Carbon Disulfide	EPA 8260B	6I20013	0.48	1.0	ND	1	09/20/06	09/20/06	
Carbon tetrachloride	EPA 8260B	6I20013	0.28	0.50	ND	1	09/20/06	09/20/06	
Chlorobenzene	EPA 8260B	6120013	0.36	1.0	ND	1	09/20/06	09/20/06	
Chloroethane	EPA 8260B	6120013	0.40	2.0	ND	1	09/20/06	09/20/06	
Chloroform	EPA 8260B	6I20013	0.33	1.0	2.6	1	09/20/06	09/20/06	
Chloromethane	EPA 8260B	6I20013	0.30	2.0	ND	1	09/20/06	09/20/06	
2-Chlorotoluene	EPA 8260B	6I20013	0.28	1.0	ND	1	09/20/06	09/20/06	
4-Chlorotoluene	EPA 8260B	6I20013	0.29	1.0	ND	1	09/20/06	09/20/06	
1,2-Dibromo-3-chloropropane	EPA 8260B	6I20013	0.92	2.0	ND	1	09/20/06	09/20/06	
Dibromochloromethane	EPA 8260B	6I20013	0.28	1.0	ND	1	09/20/06	09/20/06	
1,2-Dibromoethane (EDB)	EPA 8260B	6120013	0.32	1.0	ND	1	09/20/06	09/20/06	
1,4-Dichlorobenzene	EPA 8260B	6I20013	0.37	1.0	ND	1	09/20/06	09/20/06	
1,2-Dichlorobenzene	EPA 8260B	6I20013	0.32	1.0	ND	1	09/20/06	09/20/06	
1,3-Dichlorobenzene	EPA 8260B	6I20013	0.35	1.0	ND	1	09/20/06	09/20/06	
Dichlorodifluoromethane	EPA 8260B	6I20013	0.79	1.0	ND	1	09/20/06	09/20/06	
1,2-Dichloroethane	EPA 8260B	6I20013	0.28	0.50	ND	1	09/20/06	09/20/06	
1,1-Dichloroethane	EPA 8260B	6120013	0.27	1.0	ND	1	09/20/06	09/20/06	
1,1-Dichloroethene	EPA 8260B	6I20013	0.42	1.0	81	1	09/20/06	09/20/06	
cis-1,2-Dichloroethene	EPA 8260B	6I20013	0.32	1.0	86	1	09/20/06	09/20/06	
trans-1,2-Dichloroethene	EPA 8260B	6I20013	0.27	1.0	0.32	1	09/20/06	09/20/06	J
1,2-Dichloropropane	EPA 8260B	6I20013	0.35	1.0	ND	1	09/20/06	09/20/06	
2,2-Dichloropropane	EPA 8260B	6I20013	0.34	1.0	ND	1	09/20/06	09/20/06	
cis-1,3-Dichloropropene	EPA 8260B	6I20013	0.22	0.50	ND	1	09/20/06	09/20/06	
1,1-Dichloropropene	EPA 8260B	6I20013	0.28	1.0	ND	1	09/20/06	09/20/06	
trans-1,3-Dichloropropene	EPA 8260B	6I20013	0.32	0.50	ND	1	09/20/06	09/20/06	
Ethylbenzene	EPA 8260B	6I20013	0.25	1.0	ND	1	09/20/06	09/20/06	
Hexachlorobutadiene	EPA 8260B	6I20013	0.38	1.0	ND	1	09/20/06	09/20/06	
2-Hexanone	EPA 8260B	6I20013	2.6	6.0	ND	1	09/20/06	09/20/06	
Iodomethane	EPA 8260B	6120013	1.0	2.0	ND	1	09/20/06	09/20/06	
Isopropylbenzene	EPA 8260B	6I20013	0.25	1.0	ND	1	09/20/06	09/20/06	
TD 44 . T . C4									

TestAmerica - Irvine, CA

Michele Chamberlin

Project Manager

PC 101806

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

701 N. Parkcenter Drive Santa Ana, CA 92705 Project ID: Boeing C-6 Torrance

EM2727

Report Number: IPI0893

Sampled: 09/11/06

Received: 09/11/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
-			Limit	Limit	Kesuit	ractor	Extracteu	Anaiyzeu	Quamers
Sample ID: IPI0893-07 (MWB027_WG	091106_0001 - Wat	ter) - cont.							
Reporting Units: ug/l	DD + 00 (0D	C700010	0.00	1.0).TD		00/00/06	00/00/06	
p-Isopropyltoluene	EPA 8260B	6120013	0.28	1.0	ND	1	09/20/06	09/20/06	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	6I20013	0.32	1.0	ND	1	09/20/06	09/20/06	
Methylene chloride	EPA 8260B	6120013	0.70	1.0	ND	1	09/20/06	09/20/06	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	6I20013	3.5	5.0	ND	1	09/20/06	09/20/06	
n-Propylbenzene	EPA 8260B	6I20013	0.27	1.0	ND	1	09/20/06	09/20/06	
Styrene	EPA 8260B	6120013	0.16	1.0	ND	1	09/20/06	09/20/06	
1,1,1,2-Tetrachloroethane	EPA 8260B	6I20013	0.27	1.0	ND	1	09/20/06	09/20/06	
1,1,2,2-Tetrachloroethane	EPA 8260B	6I20013	0.24	1.0	ND	1	09/20/06	09/20/06	
Tetrachloroethene	EPA 8260B	6I20013	0.32	1.0	0.53	1	09/20/06	09/20/06	J
Tetrahydrofuran (THF)	EPA 8260B	6I20013	2.3	10	ND	1	09/20/06	09/20/06	
Toluene	EPA 8260B	6120013	0.36	1.0	ND	1.	09/20/06	09/20/06	
1,2,3-Trichlorobenzene	EPA 8260B	6I20013	0.45	1.0	ND	1	09/20/06	09/20/06	
1,2,4-Trichlorobenzene	EPA 8260B	6I20013	0.48	1.0	ND	1	09/20/06	09/20/06	
1,1,2-Trichloroethane	EPA 8260B	6I20013	0.30	1.0	ND	1	09/20/06	09/20/06	
1,1,1-Trichloroethane	EPA 8260B	6120013	0.30	1.0	ND	1	09/20/06	09/20/06	
Trichloroethene	EPA 8260B	6I20013	0.26	1.0	140	1	09/20/06	09/20/06	
Trichlorofluoromethane	EPA 8260B	6I20013	0.34	2.0	4.2	1	09/20/06	09/20/06	
1,2,3-Trichloropropane	EPA 8260B	6I20013	0.40	1.0	ND	1	09/20/06	09/20/06	
1,2,4-Trimethylbenzene	EPA 8260B	6I20013	0.23	1.0	ND	1	09/20/06	09/20/06	
1,3,5-Trimethylbenzene	EPA 8260B	6120013	0.26	1.0	ND	1	09/20/06	09/20/06	
Vinyl acetate	EPA 8260B	6120013	1.7	6.0	ND	1	09/20/06	09/20/06	
Vinyl chloride	EPA 8260B	6120013	0.26	0.50	ND	1	09/20/06	09/20/06	
Xylenes, Total	EPA 8260B	6I20013	0.90	1.0	ND	1	09/20/06	09/20/06	
Surrogate: 4-Bromofluorobenzene (80-120%)					98 %				
Surrogate: Dibromofluoromethane (80-120%)					111 %				
Surrogate: Toluene-d8 (80-120%)					107 %				

TestAmerica - Irvine, CAMichele Chamberlin
Project Manager

A 101801

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Santa Ana, CA 92705 Attention: Mehmet Pehlivan Project ID: Boeing C-6 Torrance

EM2727

Report Number: IPI0893

Sampled: 09/11/06

Received: 09/11/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IPI0893-08 (IRZCMW002_WG091106_0001 - Water)											
Reporting Units: ug/l	7002_17 G091100_0001 -	vv acci j									
Acetone	EPA 8260B	6120013	9.0	20	ND	2	09/20/06	09/20/06			
Benzene	EPA 8260B	6120013	0.56	2.0	ND	2	09/20/06	09/20/06			
Bromobenzene	EPA 8260B	6120013	0.54	2.0	ND	2	09/20/06	09/20/06			
Bromochloromethane	EPA 8260B	6120013	0.64	2.0	ND	2	09/20/06	09/20/06			
Bromodichloromethane	EPA 8260B	6120013	0.60	2.0	ND	. 2	09/20/06	09/20/06			
Bromoform	EPA 8260B	6I20013	0.64	2.0	ND	2	09/20/06	09/20/06			
Bromomethane	EPA 8260B	6I20013	0.84	2.0	ND	2	09/20/06	09/20/06			
2-Butanone (MEK)	EPA 8260B	6120013	7.6	10	ND U	J 2	09/20/06	09/20/06	•		
n-Butylbenzene	EPA 8260B	6120013	0.74	2.0	ND	2	09/20/06	09/20/06			
sec-Butylbenzene	EPA 8260B	6120013	0.50	2.0	ND	2	09/20/06	09/20/06			
tert-Butylbenzene	EPA 8260B	6I20013	0.44	2.0	ND	2	09/20/06	09/20/06			
Carbon Disulfide	EPA 8260B	6120013	0.96	2.0	ND	2	09/20/06	09/20/06			
Carbon tetrachloride	EPA 8260B	6I20013	0.56	1.0	ND	2	09/20/06	09/20/06			
Chlorobenzene	EPA 8260B	6120013	0.72	2.0	2.6	2	09/20/06	09/20/06			
Chloroethane	EPA 8260B	6I20013	0.80	4.0	ND	2	09/20/06	09/20/06			
Chloroform	EPA 8260B	6I20013	0.66	2.0	ND	2	09/20/06	09/20/06			
Chloromethane	EPA 8260B	6I20013	0.60	4.0	ND	2	09/20/06	09/20/06			
2-Chlorotoluene	EPA 8260B	6I20013	0.56	2.0	ND	2	09/20/06	09/20/06	,		
4-Chlorotoluene	EPA 8260B	6I20013	0.58	2.0	ND	2	09/20/06	09/20/06			
1,2-Dibromo-3-chloropropane	EPA 8260B	6120013	1.8	4.0	ND	2	09/20/06	09/20/06			
Dibromochloromethane	EPA 8260B	6120013	0.56	2.0	ND	2	09/20/06	09/20/06			
1,2-Dibromoethane (EDB)	EPA 8260B	6120013	0.64	2.0	ND	2	09/20/06	09/20/06			
1,4-Dichlorobenzene	EPA 8260B	6120013	0.74	2.0	ND	2	09/20/06	09/20/06			
1,2-Dichlorobenzene	EPA 8260B	6120013	0.64	2.0	ND	2	09/20/06	09/20/06			
1,3-Dichlorobenzene	EPA 8260B	6120013	0.70	2.0	ND	2	09/20/06	09/20/06			
Dichlorodifluoromethane	EPA 8260B	6120013	1.6	2.0	ND	2	09/20/06	09/20/06			
1,2-Dichloroethane	EPA 8260B	6120013	0.56	1.0	ND	2	09/20/06	09/20/06			
1,1-Dichloroethane	EPA 8260B	6I20013	0.54	2.0	ND	2	09/20/06	09/20/06			
1,1-Dichloroethene	EPA 8260B	6I20013	0.84	2.0	1.5	2	09/20/06	09/20/06	J		
cis-1,2-Dichloroethene	EPA 8260B	6I20013	0.64	2.0	2.3	2	09/20/06	09/20/06			
trans-1,2-Dichloroethene	EPA 8260B	6I20013	0.54	2.0	8.2	2	09/20/06	09/20/06			
1,2-Dichloropropane	EPA 8260B	6120013	0.70	2.0	ND	2	09/20/06	09/20/06			
2,2-Dichloropropane	EPA 8260B	6120013	0.68	2.0	ND	2	09/20/06	09/20/06			
cis-1,3-Dichloropropene	EPA 8260B	6I20013	0.44	1.0	ND	2	09/20/06	09/20/06			
1,1-Dichloropropene	EPA 8260B	6I20013	0.56	2.0	ND	2	09/20/06	09/20/06			
trans-1,3-Dichloropropene	EPA 8260B	6120013	0.64	1.0	ND	2	09/20/06	09/20/06			
Ethylbenzene	EPA 8260B	6120013	0.50	2.0	ND	2	09/20/06	09/20/06			
Hexachlorobutadiene	EPA 8260B	6I20013	0.76	2.0	ND	2	09/20/06	09/20/06			
2-Hexanone	EPA 8260B	6I20013	5.2	12	ND	2	09/20/06	09/20/06			
Iodomethane	EPA 8260B	6120013	2.0	4.0	ND	2	09/20/06	09/20/06			
Isopropylbenzene	EPA 8260B	6120013	0.50	2.0	ND	2	09/20/06	09/20/06			

TestAmerica - Irvine, CA

Michele Chamberlin

Project Manager

C101806

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

701 N. Parkcenter Drive

Santa Ana, CA 92705

Project ID: Boeing C-6 Torrance

EM2727

Report Number: IPI0893

Sampled: 09/11/06

Received: 09/11/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IPI0893-08 (IRZCMW002_	_WG091106_0001 -	Water) - con	t.						
Reporting Units: ug/l									
p-Isopropyltoluene	EPA 8260B	6I20013	0.56	2.0	ND	2	09/20/06	09/20/06	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	6I20013	0.64	2.0	ND	2	09/20/06	09/20/06	
Methylene chloride	EPA 8260B	6I20013	1.4	2.0	1.5	2	09/20/06	09/20/06	J
4-Methyl-2-pentanone (MIBK)	EPA 8260B	6I20013	7.0	10	ND	2	09/20/06	09/20/06	
n-Propylbenzene	EPA 8260B	6I20013	0.54	2.0	ND	2	09/20/06	09/20/06	
Styrene	EPA 8260B	6I20013	0.32	2.0	ND	2	09/20/06	09/20/06	
1,1,1,2-Tetrachloroethane	EPA 8260B	6120013	0.54	2.0	ND	2	09/20/06	09/20/06	
1,1,2,2-Tetrachloroethane	EPA 8260B	6120013	0.48	2.0	ND	2	09/20/06	09/20/06	
Tetrachloroethene	EPA 8260B	6120013	0.64	2.0	ND	2	09/20/06	09/20/06	
Tetrahydrofuran (THF)	EPA 8260B	6120013	4.6	20	ND	2	09/20/06	09/20/06	
Toluene	EPA 8260B	6120013	0.72	2.0	ND	2	09/20/06	09/20/06	
1,2,3-Trichlorobenzene	EPA 8260B	6I20013	0.90	2.0	ND	2	09/20/06	09/20/06	
1,2,4-Trichlorobenzene	EPA 8260B	6I20013	0.96	2.0	ND	2	09/20/06	09/20/06	
1,1,2-Trichloroethane	EPA 8260B	6120013	0.60	2.0	ND	2	09/20/06	09/20/06	
1,1,1-Trichloroethane	EPA 8260B	6I20013	0.60	2.0	ND	2	09/20/06	09/20/06	
Trichloroethene	EPA 8260B	6120013	0.52	2.0	3.7	2	09/20/06	09/20/06	
Trichlorofluoromethane	EPA 8260B	6120013	0.68	4.0	ND	2	09/20/06	09/20/06	
1,2,3-Trichloropropane	EPA 8260B	6I20013	0.80	2.0	ND	2	09/20/06	09/20/06	
1,2,4-Trimethylbenzene	EPA 8260B	6120013	0.46	2.0	ND	2	09/20/06	09/20/06	
1,3,5-Trimethylbenzene	EPA 8260B	6120013	0.52	2.0	ND	2	09/20/06	09/20/06	
Vinyl acetate	EPA 8260B	6120013	3.4	12	ND	2	09/20/06	09/20/06	
Xylenes, Total	EPA 8260B	6I20013	1.8	2.0	ND	2	09/20/06	09/20/06	
Surrogate: 4-Bromofluorobenzene (80-12	10%)				100 %				
Surrogate: Dibromofluoromethane (80-12	20%)				96 %				
Surrogate: Toluene-d8 (80-120%)					106 %				

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced,

 $except\ in\ full,\ without\ written\ permission\ from\ TestAmerica.$

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

F 101866

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive Santa Ana, CA 92705

Attention: Mehmet Pehlivan

Project ID: Boeing C-6 Torrance

EM2727

Report Number: IPI0893

Sampled: 09/11/06

Received: 09/11/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPI0893-08RE1 (IRZCMW002	_WG091106_000	1 - Water) -	cont.						
Reporting Units: ug/l									
Vinyl chloride	EPA 8260B	6I17015	5.2	10	1000	20	09/17/06	09/17/06	
Surrogate: 4-Bromofluorobenzene (80-120%))				95 %				
Surrogate: Dibromofluoromethane (80-120%	ó)				103 %				
Surrogate: Toluene-d8 (80-120%)					100 %				

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

R/01806

LDC #: 15615B1	VALIDATION COMPLETENESS WORKSHEET	Date:_ 10/18/06
SDG #: IPI0893	EPA Region 1 - Tier 2	Page: /of /
Laboratory: Test America	_	Reviewer:
METHOD, COMOVALACIA, (F	TRA CIAL CACAL III - LOCCOD	2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	4	Sampling dates: 9/11/04
11.	GC/MS Instrument performance check	A	
111.	Initial calibration	SW	1/0 RSP, 12 Zaggo
IV.	Continuing calibration	SW.	
V.	Blanks	5W)	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	4	
VIII.	Laboratory control samples	A	LCS
IX.	Regional Quality Assurance and Quality Control	N	
Χ.	Internal standards	Δ	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	Δ	
XVI.	Field duplicates	7	
XVII.	Field blanks	N	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

wall					
1 CMW002_WG091	106_0001	6E\6020	21	31	
2 3 MWB027_WG091	106_0001	6I 17015	22	32	
3 3 IRZCMW002 WG	091106_0001 13 3	6120013	23	33	
4 2 CMW002-NGO	71106-0001 14-4	6 <u>F</u> 1'	24	34	
52 IRZCHWOOZ	_ WG091106-100	DIREI	25	35	
6	16		26	36	
7	17		27	37	
8	18		28	38	
9	19		29	39	
10	20		30	 40	

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	S. Trichloroethene	KK. Trichlorofluoromethane	CCC, tert-Butylbenzene	UUU. 1,2-Dichlorotetrafluoroethane
B. Bromomethane	T. Dibromochloromethane	LL. Methyl-tert-butyl ether	DDD. 1,2,4-Trimethylbenzene	VVV. 4-Ethyltoluene
C. Vinyl choride**	U. 1,1,2-Trichloroethane	MM. 1,2-Dibromo-3-chloropropane	EEE. sec-Butylbenzene	www. Ethanol
D. Chloroethane	V. Benzene	NN. Methyl ethyl ketone	FFF. 1,3-Dichlorobenzene	XXX. Di-isopropyl ether
E. Methylene chloride	W. trans-1,3-Dichloropropene	OO. 2,2-Dichloropropane	GGG. p-isopropyltoluene	YYY. tert-Butanol
F. Acetone	X. Bromoform*	PP. Bromochloromethane	HHH. 1,4-Dichlorobenzene	ZZZ. tert-Butyl alcohol
G. Carbon disulfide	Y. 4-Methyl-2-pentanone	QQ. 1,1-Dichloropropene	III. n-Butylbenzene	AAAA. Ethyl tert-butyl ether
H. 1,1-Dichloroethene**	Z. 2-Hexanone	RR. Dibromomethane	JJJ. 1,2-Dichlorobenzene	BBBB. tert-Amyl methyl ether
I. 1,1-Dichloroethane*	AA. Tetrachloroethene	SS. 1,3-Dichloropropane	KKK. 1,2,4-Trichlorobenzene	CCCC.1-Chlorohexane
J. 1,2-Dichloroethene, total	BB. 1,1,2,2-Tetrachloroethane*	TT. 1,2-Dibromoethane	LLL. Hexachlorobutadiene	DDDD. Isopropyl alcohol
K. Chloroform**	CC. Toluene**	UU. 1,1,1,2-Tetrachloroethane	MMM. Naphthalene	EEEE. Acetonitrile
L. 1,2-Dichloroethane	DD. Chlorobenzene*	VV. Isopropylbenzene	NNN. 1,2,3-Trichlorobenzene	FFFF. Acrolein
M. 2-Butanone	EE. Ethylbenzene**	WW. Bromobenzene	OOO. 1,3,5-Trichlorobenzene	GGGG. Acrylonitrile
N. 1,1,1-Trichloroethane	FF. Styrene	XX. 1,2,3-Trichloropropane	PPP. trans-1,2-Dichloroethene	HHHH. 1,4-Dioxane
0. Carbon tetrachloride	GG. Xylenes, total	YY. r-Propylbenzene	QQQ. cis-1,2-Dichloroethene	IIII. Isobutyl alcohol
P. Bromodichloromethane	HH. Vinyl acetate	ZZ. 2-Chlorotoluene	RRR. m,p-Xylenes	JJJJ. Methacrylonitrile
Q. 1,2-Dichloropropane**	II. 2-Chloroethylvinyl ether	AAA. 1,3,5-Trimethylbenzene	SSS. o-Xylene	KKKK. Propionitrile
R. cis-1,3-Dichloropropene	JJ. Dichlorodifluoromethane	BBB. 4-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	רותר

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

VALIDATION FINDINGS WORKSHEET Initial Calibration

Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

LDC #: 15615B1 SDG #: 1710893

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". AN NA

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Did the laboratory perform a 5 point calibration prior to sample analysis?

Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?

Did the initial calibration meet the acceptance criteria?

N/A N) N/A

/ N N/A Y/N N/A Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF?

1		-		<u></u>		1		Ī	Ī	_	T			T		Ī	T	T	
Qualifications	3/43/A						J W3/A												
Associated Samples	€ I16020-BAnk,	-1# 52				•	6I20013-BANK,	2.3											
Finaing RRF (Limit: >0.05)	0.04×						0.039												
Finding %RSD (Limit: ≤30.0%)			•																
Compound	Σ	•		. ,			×	•											
Standard ID	ICAL- GEMSI						1CAL - GLEMS33												
# Date	90/2/10	-					19/8/16												

LDC #: 15 615 B | SDG #: 18 10893

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Pigase see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF ? X N N/A

H							
*	Date	·Standard ID	Compound	Finding %D (Umit: <25.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
	19/18/06	. Non	Ą	38		6116020-Blank	5/43/A
	9:13 AM		4	<u>.</u> 4		-#	->
	90000	\sqr	Ź		240.0	6120013 -8 pink	1 hs 1/2
	18:12/AM			•	•		4
						1	
							and a facility of the state of
							of the spiritual state of the spiritual state of the spiritual spi
				-			
-							
						٠	

18519	66801
DC #: 13	DG #: 1 F

Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was a method blank associated with every sample in this SDG? V N N

Was a method blank analyzed at least once every 12 hours for each matrix and concentration? N/A

Was there contamination in the method blanks? If yes, please see the qualifications below. Y /N N/A

Blank analysis date: 9

Associated Samples: Conc. units: Mg

ND Sample identification 612 DO13-Bank Blank ID 346 tetrahydnotuan Methylene Bilande Compound 4 cetone SRO

Blank analysis date:

Conc. units:

Associated Samples:

Compound	Blank ID				Ø	Sample Identification	tlon		
				-					
Methylene chloride			-						
V									
Acetone									
		•							
									÷
							•		
						•		-	

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were also qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg C-6

Collection Date:

September 13, 2006

LDC Report Date:

October 18, 2006

Matrix:

Water

Parameters:

Volatiles

Validation Level:

Tier 3

Laboratory:

TestAmerica

Sample Delivery Group (SDG): IPI1170

Sample Identification

IRZB0095_WG091306_0001 IRZB0095_WG091306_0001RE

Introduction

This data review covers 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination (r^2) were greater than or equal to 0.990.

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/18/06	2-Butanone	0.039 (≥0.05)	IRZB0095_WG091306_0001RE 6l22012-BLK1	J (all detects) UJ (all non-detects)	А

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
9/22/06	2-Butanone	25.6	IRZB0095_WG091306_0001RE 6l22012-BLK1	J (all detects) UJ (all non-detects)	А

All of the continuing calibration RRF values were within method and validation criteria with the following exceptions:

Date	Compound	RRF (Limits)	Associated Samples	Flag	A or P
9/22/06	2-Butanone	0.049 (≥0.05)	IRZB0095_WG091306_0001RE 6l22012-BLK1	J (all detects) UJ (all non-detects)	А

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
6122012-Blank	9/22/06	Tetrahydrofuran 1,2,4-Trimethylbenzene	4.23 ug/L 0.280 ug/L	IRZB0095_WG091306_0001RE

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound	Reported	Modified Final
	TIC (RT in minutes)	Concentration	Concentration
IRZB0095_WG091306_0001RE (4x)	Tetrahydrofuran	12 ug/L	40U ug/L

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were not within QC limits. Since there were no associated samples, no data were qualified.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID	Compound	%R (Limits)	Associated Samples	Flag	A or P
6l22012-BS1	Acetone 2-Butanone 2-Hexanone	144 (25-135) 139 (40-135) 145 (40-135)	IRZB0095_WG091306_0001RE 6l22012-BLK1	J (all detects) J (all detects) J (all detects)	Р

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg C-6 Volatiles - Data Qualification Summary - SDG IPI1170

SDG	Sample	Compound	Flag	A or P	Reason
IPI1170	IRZB0095_WG091306_0001RE	2-Butanone	J (all detects) UJ (all non-detects)	А	Initial calibration (RRF)
IPI1170	IRZB0095_WG091306_0001RE	2-Butanone	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D)
IPI1170	IRZB0095_WG091306_0001RE	2-Butanone	J (all detects) UJ (all non-detects)	А	Continuing calibration (RRF)
IPI1170	IRZB0095_WG091306_0001RE	Acetone 2-Butanone 2-Hexanone	J (all detects) J (all detects) J (all detects)	Р	Laboratory control samples (%R)

Boeing Realty Corp., Bldg C-6 Volatiles - Laboratory Blank Data Qualification Summary - SDG IPI1170

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P
IPI1170	IRZB0095_WG091306_0001RE (4x)	Tetrahydrofuran	40U ug/L	А

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

701 N. Parkcenter Drive

Santa Ana, CA 92705

Project ID: Boeing C-6 Torrance

EM2727

Report Number: IPI1170

Sampled: 09/13/06

Received: 09/13/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPI1170-04 (IRZB0095_W Reporting Units: ug/l	/G091306_0001 - Wa	ater)							
cis-1,2-Dichloroethene	EPA 8260B	6I17012	3.2	10	610	10	09/17/06	09/17/06	
Trichloroethene	EPA 8260B	6117012	2.6	10	470	10	09/17/06	09/17/06	
Vinyl chloride	EPA 8260B	6117012	2.6	5.0	1100	10	09/17/06	09/17/06	
Surrogate: 4-Bromofluorobenzene (80-1		V=2, V==			99%				
Surrogate: Dibromofluoromethane (80-					114%				
Surrogate: Toluene-d8 (80-120%)	,,,				101 %				
	# *******	***							
Sample ID: IPI1170-04RE1 (IRZB009)	5_WG091306_0001	- Water)							
Reporting Units: ug/l	ED 4 02/0D	CT00010	10	40	ND	1	09/22/06	09/22/06	L
Acetone	EPA 8260B	6122012	18	40		4	09/22/06	09/22/06	L
Benzene	EPA 8260B	6122012	1.1	4.0	ND	4	09/22/06	09/22/06	
Bromobenzene	EPA 8260B	6I22012	1.1	4.0	ND .	4			
Bromochloromethane	EPA 8260B	6122012	1.3	4.0	ND	4	09/22/06	09/22/06	
Bromodichloromethane	EPA 8260B	6I22012	1.2	4.0	ND	4	09/22/06	09/22/06	
Bromoform	EPA 8260B	6122012	1.3	4.0	ND	4	09/22/06	09/22/06	
Bromomethane	EPA 8260B	6122012	1.7	4.0	ND U	4	09/22/06	09/22/06 09/22/06	т
2-Butanone (MEK)	EPA 8260B	6I22012	15	20	ND UC		09/22/06		L
n-Butylbenzene	EPA 8260B	6122012	1.5	4.0	ND	4	09/22/06	09/22/06	
sec-Butylbenzene	EPA 8260B	6I22012	1.0	4.0	ND	4	09/22/06	09/22/06	
tert-Butylbenzene	EPA 8260B	6122012	0.88	4.0	ND	4	09/22/06	09/22/06	
Carbon Disulfide	EPA 8260B	6122012	1.9	4.0	ND	4	09/22/06	09/22/06	
Carbon tetrachloride	EPA 8260B	6122012	1.1	2.0	ND	4	09/22/06	09/22/06	
Chlorobenzene	EPA 8260B	6122012	1.4	4.0	ND	4	09/22/06	09/22/06	
Chloroethane	EPA 8260B	6122012	1.6	8.0	ND	4	09/22/06	09/22/06	-
Chloroform	EPA 8260B	6122012	1.3	4.0	1.4	4	09/22/06	09/22/06	J
Chloromethane	EPA 8260B	6122012	1.2	8.0	ND	4	09/22/06	09/22/06	
2-Chlorotoluene	EPA 8260B	6122012	1.1	4.0	ND	4	09/22/06	09/22/06	
4-Chlorotoluene	EPA 8260B	6122012	1.2	4.0	ND	4	09/22/06	09/22/06	
1,2-Dibromo-3-chloropropane	EPA 8260B	6122012	3.7	8.0	ND	4	09/22/06	09/22/06	
Dibromochloromethane	EPA 8260B	6122012	1.1	4.0	ND	4	09/22/06	09/22/06	
1,2-Dibromoethane (EDB)	EPA 8260B	6122012	1.3	4.0	ND	4	09/22/06	09/22/06	
1,4-Dichlorobenzene	EPA 8260B	6122012	1.5	4.0	ND	4	09/22/06	09/22/06	
1,2-Dichlorobenzene	EPA 8260B	6122012	1.3	4.0	ND	4	09/22/06	09/22/06	
1,3-Dichlorobenzene	EPA 8260B	6122012	1.4	4.0	ND	. 4	09/22/06	09/22/06	
Dichlorodifluoromethane	EPA 8260B	6122012	3.2	4.0	ND	4	09/22/06	09/22/06	
1,2-Dichloroethane	EPA 8260B	6122012	1.1	2.0	ND	4	09/22/06	09/22/06	•
1,1-Dichloroethane	EPA 8260B	6122012	1.1	4.0	ND	4	09/22/06	09/22/06	
1,1-Dichloroethene	EPA 8260B	6122012	1.7	4.0	11	4	09/22/06	09/22/06	
trans-1,2-Dichloroethene	EPA 8260B	6122012	1.1	4.0	4.9	4	09/22/06	09/22/06	
1,2-Dichloropropane	EPA 8260B	6122012	1.4	4.0	ND	4	09/22/06	09/22/06	
2,2-Dichloropropane	EPA 8260B	6122012	1.4	4.0	ND	4	09/22/06	09/22/06	

TestAmerica - Irvine, CA

Nicholas Marz For Michele Chamberlin

Project Manager

A 10/806

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IPI1170 < Page 8 of 65>

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing 701 N. Parkcenter Drive

Project ID: Boeing C-6 Torrance

EM2727

Sampled: 09/13/06

Santa Ana, CA 92705 Attention: Mehmet Pehlivan Report Number: IPI1170

Received: 09/13/06

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
•								y	•
Sample ID: IPI1170-04RE1 (IRZB0095_ Reporting Units: ug/l	_WG091306_0001	- Water) - co	nt.				•		
cis-1,3-Dichloropropene	EPA 8260B	6I22012	0.88	2.0	ND	4	09/22/06	09/22/06	
1,1-Dichloropropene	EPA 8260B	6122012	1.1	4.0	ND	4	09/22/06	09/22/06	
trans-1,3-Dichloropropene	EPA 8260B	6122012	1.3	2.0	ND	4	09/22/06	09/22/06	
Ethylbenzene	EPA 8260B	6I22012	1.0	4.0	ND	4	09/22/06	09/22/06	
Hexachlorobutadiene	EPA 8260B	6I22012	1.5	4.0	ND	4	09/22/06	09/22/06	
2-Hexanone	EPA 8260B	6122012	10	24	ND	4	09/22/06	09/22/06	L
Iodomethane	EPA 8260B	6122012	4.0	8.0	ND	4	09/22/06	09/22/06	•
Isopropylbenzene	EPA 8260B	6I22012	1.0	4.0	ND	4	09/22/06	09/22/06	
p-Isopropyltoluene	EPA 8260B	6122012	1.1	4.0	ND	4	09/22/06	09/22/06	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	6I22012	1.3	4.0	ND	4	09/22/06	09/22/06	
Methylene chloride	EPA 8260B	6I22012	2.8	4.0	ND	4	09/22/06	09/22/06	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	6122012	14	20	ND	4	09/22/06	09/22/06	
n-Propylbenzene	EPA 8260B	6I22012	1.1	4.0	ND	4	09/22/06	09/22/06	
Styrene	EPA 8260B	6122012	0.64	4.0	ND	4	09/22/06	09/22/06	
1,1,1,2-Tetrachloroethane	EPA 8260B	6I22012	1.1	4.0	ND	4	09/22/06	09/22/06	
1,1,2,2-Tetrachloroethane	EPA 8260B	6I22012	0.96	4.0	ND	4	09/22/06	09/22/06	
Tetrachloroethene	EPA 8260B	6I22012	1.3	4.0	3.7	4	09/22/06	09/22/06	J
Tetrahydrofuran (THF)	EPA 8260B	6I22012	9.2	40	12 40	U 4	09/22/06	09/22/06	B, J
Toluene	EPA 8260B	6I22012	1.4	4.0	ND	4	09/22/06	09/22/06	
1,2,3-Trichlorobenzene	EPA 8260B	6122012	1.8	4.0	ND	4	09/22/06	09/22/06	
1,2,4-Trichlorobenzene	EPA 8260B	6I22012	1.9	4.0	ND	4	09/22/06	09/22/06	
1,1,2-Trichloroethane	EPA 8260B	6I22012	1.2	4.0	ND	4	09/22/06	09/22/06	
1,1,1-Trichloroethane	EPA 8260B	6I22012	1.2	4.0	ND	4	09/22/06	09/22/06	
Trichlorofluoromethane	EPA 8260B	6I22012	1.4	8.0	ND	4	09/22/06	09/22/06	
1,2,3-Trichloropropane	EPA 8260B	6I22012	1.6	4.0	ND	4	09/22/06	09/22/06	
1,2,4-Trimethylbenzene	EPA 8260B	6I22012	0.92	4.0	ND	4	09/22/06	09/22/06	
1,3,5-Trimethylbenzene	EPA 8260B	6I22012	1.0	4.0	ND	4	09/22/06	09/22/06	
Vinyl acetate	EPA 8260B	6122012	6.8	24	ND	4	09/22/06	09/22/06	
Xylenes, Total	EPA 8260B	6I22012	3.6	4.0	ND	4	09/22/06	09/22/06	
Surrogate: 4-Bromofluorobenzene (80-120	•				100 %				
Surrogate: Dibromofluoromethane (80-12)	0%)				107 %				
Surrogate: Toluene-d8 (80-120%)					106 %				

TestAmerica - Irvine, CANicholas Marz For Michele Chamberlin
Project Manager

R 10/806

VALIDATION COMPLETENESS WORKSHEET LDC #: 15615C1 SDG #: IPI1170

EPA Region 1 - Tier 3

Date:	10	18	/ 0 .
Page:_	<u>_</u> /o	f	•
Reviewer:	•	<u> </u>	
2nd Reviewer:			

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

Laboratory: Test America

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 9 13 0 6
11.	GC/MS Instrument performance check	A	
111.	Initial calibration	Sw	% PSP, 12 2099U
IV.	Continuing calibration	SW	
V.	Blanks	چىن	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	5W	EB- TAIT 091306-0001
VIII.	Laboratory control samples	یسی	د ح
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	Δ	·
XII.	Compound quantitation/CRQLs	Δ	
XIII.	Tentatively identified compounds (TICs)	Ŋ	not reported
XIV.	System performance	A	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	Ν	
XVII.	Field blanks	Ν	

Note:

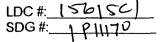
5,0

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

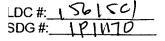

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

	Walter					
11	IRZB0095_WG091306_0001	11 \	6I17012	21	31	
22	1RZB0095-WG091306-000	122	6I 22012	22	32	
3	Re	1 13		23	33	
4		14		24	 34	
5		15		25	 35	
6		16		26	36	
7		17		27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	



VALIDATION FINDINGS CHECKLIST

Page: /_of__2
Reviewer: _____57
2nd Reviewer: _____

Method: Volatiles (EPA SW 846 Method 8260B)

Validation Area	Yes	No	NA	Findings/Comments
Il Technical holding times.		T		T The state of the
All technical holding times were met.	/	<u> </u>	<u> </u>	
Cooler temperature criteria was met.				
Il GC/MS Instrument performance check	T	T	7 A	T
Were the BFB performance results reviewed and found to be within the specified criteria?		1		
Were all samples analyzed within the 12 hour clock criteria?		1		
10-3 millia Calibration #		T	T	
Did the laboratory perform a 5 point calibration prior to sample analysis?		ļ	 	
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	1			
Was a curve fit used for evaluation?			ļ	<u> </u>
Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990?	/	ļ		
Were all percent relative standard deviations (%RSD) \leq 30% and relative response factors (RRF) \geq 0.05?			<u> </u>	
IV Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?			-	
V. Blanks 1				A part of the second se
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
W.Surrogate spikes				Topic Control
Were all surrogate %R within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
WIL Matrix spike Matrix spike duplicates				The state of the s
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences RPD) within the QC limits?				
All: Laboratory control samples				
Was an LCS analyzed for this SDG?				

VALIDATION FINDINGS CHECKLIST

Page: Zof Z Reviewer: 77 2nd Reviewer: 4

				
Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per analytical batch?	-	<u> </u>	<u> </u>	
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				V*
IX. Regional Cuality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?			/	
Were the performance evaluation (PE) samples within the acceptance limits?				
X Internal standards 2.2				
Were internal standard area counts within -50% or +100% of the associated calibration standard?		-		
Were retention times within + 30 seconds of the associated calibration standard?				
XIII argel Compound dentification (x 1 x 1) x x x x x x x x x x x x x x x x				a esta
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?		-		
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XII:Sompound quantitation/CROLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII a equatively identified compounds (TiOs)				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?				
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?				
MV System performance				
System performance was found to be acceptable.				
XV Gyerall assessment of data				
Overall assessment of data was found to be acceptable.	1	-		
XVI Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.			1	
VIII: Field blanks				
rield blanks were identified in this SDG.				
rarget compounds were detected in the field blanks.				

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	S. Trichloroethene	KK. Trichlorofluoromethane	COO tert-Butt-thousand	
B. Bromomethane	T. Dibromochioromethane	1. Methyl-ten-buty other	coc. rateoutybalizatie	UUU. 1,2-Dichlorotetrafluoroethane
C. Vinyl phoride**			UUU. 1,2,4~1 rimetnyibenzene	VVV. 4-Ethyltoluene
	U. 1,1,2-1 nchloroethane	MM. 1,2-Dibromo-3-chloropropane	EEE. sec-Butylbenzene	WWW. Ethanol
D. Chloroethane	V. Benzene	NN. Methyl ethyl ketone	FFF. 1,3-Dichlorobenzene	XXX Discourant other
E. Methylene chloride	W. trans-1,3-Dichloropropene	OO. 2,2-Dichloropropane	GGG p-length the same	
F. Acetone	X. Bromoform*	PP. Bromochloromathana		TT. ter-butanoi
G. Carbon disulfida	× × × × × × × × × × × × × × × × × × ×		1,4-Dignioropenzene	ZZZ. tert-Butyl alcohol
	r. 4-twethyt-2-pentanone	QQ. 1,1-Dichloropropene	III. n-Butylbenzene	AAAA. Ethyl tert-butyl ether
H. 1,1-Dichloroethene**	Z. 2-Hexanone	RR. Dibromomethane	JJJ. 1,2-Dichlorobenzene	BBBB (erf-Amyl methyl ether
1. 1,1-Dichloroethane*	AA. Tetrachloroethene	SS. 1,3-Dichloropropane	XXX 124-Trichlombon-22	
1 1 2-Diablement and and				CCC.1-Chlorohexane
o. 1,4-Diditiol Defriene, total	BB. 1,1,2,2-Tetrachioroethane*	TT. 1,2-Dibromoethane	LLL. Hexachlorobutadiene	DDDD. Isopropyl alcohol
K. Chloroform**	CC. Toluene**	UU. 1,1,1,2-Tetrachloroethane	MMM. Naphthalepe	FFFF According
L. 1,2-Dichlomethane	DD. Chlorobenzene*	W Isomonyhanzana		
M S. Britanosa	1		ININN. 1,2,3-1 richlorobenzene	FFFF, Acrolein
m. z-butanone	EE. Ethylbenzene**	WW. Bromobenzene	000. 1,3,5-Trichlorobenzene	GGGG. Acrylonitrile
N. 1,1,1-Trichloroethane	FF. Styrene	XX. 1,2,3-Trichloropropane	PPP. trans-1,2-Dichloroethene	HHHH 14-Diovane
O. Carbon tetrachloride	GG. Xylenes, total	YY. n-Propylbenzene	QQQ. cis-1.2-Dichtomethene	
P. Bromodichloromethane	HH. Vinyl acetate	ZZ. 2-Chlorotoluene	BRB W. V. Vanco	וווי ופטמולו מוכחולום
Q. 1,2-Dichloropropane**	II. 2-Chloroethylvinyl ether	000 1 0 E Timestration	Spilot C. din the second	JJJJ. Methacrylonitrile
		- 1	SSS. o-Xylene	KKKK. Propionitrile
L v. cis-1,3-Dichioropropene	JJ. Dichiorodifluoromethane	BBB, 4-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	רודר.
-				

* = System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

Initial Calibration

Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

LDC #: 151015c

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Did the laboratory perform a 5 point calibration prior to sample analysis?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?

Did the initial calibration meet the acceptance criteria? Y (N)N/A Y N N/A

. [11	T	T	T	T	7	T	7	Ť	T	T	T	T	T				T	T	T		П				
	Qualifications	J/11/A												•												
	Associated Samples	-6122012 -Blank,	# 2					•																	,	
Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF?	Finding RRF (Limit: >0.05)	0.039	,																							
Were all %RSDs and RRFs within the validation criteria of ≤30 %	Finding %RSD (Limit: <30.0%)			•		-		-																		
3Fs within the validati	Compound	٤		Tetaphydraum	· · ·																					
ere all %RSDs and RI	Standard ID	ICAL- GEMS33																								
N/N/W	Date	9/18/06	\vdash																					,		
1.7	∥ *	1			ĺ	1		1	11	1	i	1	1	1	1	1	- 1	1	1	1	1_	ᆚᆫ	 	 	L_	

Continuing Calibration

SDG #: 1P11170 LDC #: 156150

Page: Reviewer: 2nd Reviewer:

> Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD: GC/MS VOA (EPA SW 846 Method 8260) N NA

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ?

Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF?

NNA

)	Date	· Standard ID	Compound	Finding %D (Umit: <25.0%)	Finding RRF (Limit: >0.05)	Associated Samples	Qualifications	
6	9/22 10V	ees .	V		eko.o	4mp/8- 5105713	1/w/A	
F'	7:23 AM			か&		サゲ	7	
						,		
					-			
				•				
i			·					
ļ								
- 1								
- 1								
I								
				٠				
1								
-								
- 1			·					
- 1		·						
1								
- 1								
-				·				
ļ								
1								

3015 C	1911170
DC #: ☐:	SDG #:

Page: of	Reviewer:	2nd Reviewer:

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Was a method blank analyzed at least once every 12 hours for each matrix and concentration? Was a method blank associated with every sample in this SDG?

Was there contamination in the method blanks? If yes, please see the qualifications below.

9/2/06 Błank analysis date: Conc. units: Ma

Conc. units: wa L		Associated Samples:_	7
Compound	Blank ID	X+1	Sample Identification
	6122012- BANK		
Methylene Choride Furem	4.23	NO4/21	
Acetone DDD	0.280	1	
•			
CROL			

Blank analysis date:

Conc. units:

Associated Samples:

Compound	Blank ID		Sample Identification	ıtlon	
Methylene chloride					
Acetone					
		•		-	
וכחתר					

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were also qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC #: 155015 C SDG #: 1911/70

VALIDATION FINDINGS WORKSHEET

Page: / of

Reviewer: 2nd Reviewer:

Matrix Spike/Matrix Spike Duplicates

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? Was a MS/MSD analyzed every 20 samples of each matrix?

	7	T	T	T	T -	T	 	T	T-	T	T		1			П			i	T T	T =	T		_
Qualifications	20 Out 1																		RPD (Water)	<u>≤</u> 14%	<u><</u> 14%	<u>≤</u> 11%	<u>< 13%</u>	< 13%
Associated Samples	no Ass, sample	7																	QC Limits (Water)	61-145%	71-120%	76-127%	76-125%	75-130%
RPD (Limits)	()	()	()	())	()	()	()	()	()	()	()	2 (()	()	()	()	RPD (Soil)	≥ 22%	< 24%	≥ 21%	≤ 21%	< 21%
MSD %R (Limits)	112 (15185)	()	()	())	(()	()	()	()	()	()	()	()	()	()	()	()	Limits (Soil)	59-172%	37%	42%	%68	33%
MS %R (Limits)	174 (15-155)	(SM-55) 751	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	(QC Limi	59-1	62-137%	66-142%	59-139%	60-133%
Compound	1 25	*K																	pu					
MS/MSD ID	E8-TAIT&91306-	6001MS 117																	Compound	1,1-Dichloroethene	Trichloroethene	Benzene	Toluene	Chlorobenzene
# Date																-				ï	ý.	>		OO

LDC #: 156150 SDG #: 1 P11170

VALIDATION FINDINGS WORKSHEET

Page:

Reviewer: 2nd Reviewer:

Laboratory Control Samples (LCS)

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/M N/A AN NX

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? Was a LCS required?

								-			_			_									T	_
Qualifications	1 Paut		->																					
Associated Samples	6I22012 - Blank,		->																					
RPD (Limits)	()	()	((()	()	()	()	()	(()	(()	()	()	()	()	()	()	()	()	()	()	()
LCSD %R (Limits)	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()	()
LCS %R (Limits)	144 (25-135))	-oh) .	.)	()	()	(.)	()	()	(()	()	()	()	()	()	()	()	()	(()	()	()	()
Compound	L	M	7					-																
TCS/FCSD ID	6122012 -BS1																							
Date																								

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

2nd Reviewer: Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the

 $RRF = (A_{\nu}(C_{\nu})/(A_{\mu})(C_{\nu})$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

A_x = Area of compound,

 $A_{\rm h}$ = Area of associated internal standard $C_{\rm h}$ = Concentration of Internal standard

C_x ≈ Concentration of compound, S = Standard deviation of the RRFs X ≈ Mean of the RRFs

_									
				Reported	Recalculated	Reported	Recalculated	Renorted	Docaloudated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (725 std)	RRF	Average RRF	Average RRF		uacalculated
	Gems 1	9/12/06	ruin.		(aux C	(minal)	(initial)	%RSD	%RSD
			-Wethyvene Chloride (1st internal standard)	0.589	6.589	0.587	122.0	7,93,2	7,927
			Trichiorethene (2nd internal standard)	0.406	204.0	0.384	0.384	0 241.	92,6
			Teluene (3rd internal standar d)					217	7527
. N	GR MS 3	90/81/6	Vini	1			7.		
			metry rene Cinoride (1st internal standard)	6.418	0.418	0.477	0.477	12.79	12.19
floor			Trichlorethene (2nd internal standard)	0.413	0.413	212.0	272.0	41.01	12 42
			Tolucke (3rd internal standard)	1.795	796	- /2		71	2 3
			1,2- 000		2.	1.20.1	<u>.</u> کې	13.96	13.76
9			Methylene chloride (1st internal standard)	1.53	1.531	1 .405	1.405	18.11	11.87
			Trichlorethene (2nd Internal standard)						
			Toluene (3rd Internal standard)						
4	-		Methylene chloride (1st internal standard)	•					,
\int			Trichlorethene (2nd Internal standard)						
			Toluene (3rd Internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the

LDC #: 1561 54/ SDG #: 16/11/10

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 6f Beviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_J)(C_h)/(A_h)(C_J)$

Where: ave. RRF = Initial calibration average RRF RRF = continuing calibration RRF

A_x = Area of compound,
C_x = Concentration of compound,
C_x = C

 $A_h = Area$ of associated internal standard nd, $C_h = Concentration$ of internal standard

		Reported	Recalculated	Reported	Recalculated
Compound (Reference Internal Standard)	Average RRF (Initial)	RRF (CC)	RRF (CC)	0%	0 %
પ્રાંત્ર) Methylope chloride (1st Internal standard)	0.587	0.530	0.530	9.7	4.7
Trichlorethene (2nd internal standard)	0. 384	6.393	0.393	2.3	4.3
Toluens (3rd Internal standard) -					,
Nethylefie chloride (1st Internal standard)	P.477	0.385	0.385	19.3	19.3
Trichlorethene (2nd internal standard)	0.312	BLE-0	815.0	2.6	٩
Toling (3rd Internal standard)	1.809	1.598	1-5798	5.9	5.9
いユー OC(?) - Methylene chlor ide (1st internal standard)	50h-1	1.398	1.398	-1	1-
Trichlorethene (2nd Internal standard)					
Toluene (3rd Internal standard)					
Methylene chloride (1st internal standard)					
Trichlorethene (2nd internal standard)					
Toluene (3rd Internal standard)					
II II	Methylene chloride (1st internal standard) Trichlorethene (2nd internal standard) Toluene (3rd internal standard)	Methylene chloride (1st internal standard) Trichlorethene (2nd internal standard) Toluene (3rd internal standard)	Methylene chloride (1st internal standard) Trichlorethene (2nd internal standard) Toluene (3rd internal standard)	Methylene chloride (1st Internal standard) Trichlorethene (2nd internal standard) Toluene (3rd Internal standard)	Methylene chloride (1st Internal standard) Trichlorethene (2nd internal standard) Toluene (3rd Internal standard)

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

CONCLC,1SB

LDC #: 15615C/ SDG #: 181111

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:	/ of /
Reviewer:	P7
_ 2nd reviewer:_	N.

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The perc	ent recoveries (%R) (of surrogates were	recalculated for the co	mpounds identified	below using	the following	calculation:
----------	------------------	-------	--------------------	-------------------------	--------------------	-------------	---------------	--------------

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:_______

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference	
Toluene-d8	25	26.57	106	106	0	
Bromofluorobenzene		25.12	100	100	1	
1,2-Dichloroethane-d4						
Dibromofluoromethane	J	26.76	107	107	V	

Sample ID:____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene			•		
1,2-Dichloroethane-d4				·	4.
Dibromofluoromethane					•

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					7
Dibromofluoromethane					

Sample ID:__

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene		·			
1,2-Dichloroethane-d4	·		·		٠.
Dibromofluoromethane					

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene	·			·	
1,2-Dichioroethane-d4			1.		
Dibromofluoromethane	·		· · · · · · · · · · · · · · · · · · ·		

LDC #: SDG #:

Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Page: 2nd Reviewer: Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified

% Recovery = 100 * (SSC - SC)/SA

SSC = Spiked sample concentration SA = Spike added Where:

SC = Sample concentration

RPD = 1 MSC - MSDC 1 * 2/(MSC + MSDC)

MSC = Matrix spike percent recovery

MSDO = Matrix spike duplicate percent recovery

MS/MSD sample: EB - TAITOGISOG - 600

					,					
Č	Spike Added	Sample Concentration	Spiked Sample	Matrix Spike	Spike	Matrix Spike Duplicate	Duplicate	S.N.	MS/MSD	
Compound	(7 BM)	(ug/L)	$(\sqrt{2}/\sqrt{2})$	Percent Recovery	ecovery	Percent Recovery	700,000			
	9	>	<u> </u>				section,	_	RPD	_
	╫		MS MSD	Reported	Recalc.	Reported	Recalc.	Reported	Becalculated	
I, I-Dichloroethene	25.0 x.0	e	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-				nathinging	
Trichloroethene			70.0	F	. 7.1	. [1]	[2]	'n	'n	
			27.72	109	ā	12.11	110		,	
Benzene			T	-	9	-	1	3	2	
T. C. 1.0.1			26.0 26.6	104	104	٥	100	4	4	
alianio -			27.0 27.6	90	901	(011			
Chlorobenzene			ŀ	,		0	2	1	4	
	7	- ò	26.4 27.0	90	106	801	801	И	2	
									-	_

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and assoclated samples when reported results do not agree within

MSDCLC.1SB

	P11170
1	SDG #:

Laboratory Control Sample Results Verification VALIDATION FINDINGS WORKSHEET

2nd Reviewer: Page: Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

SSC = Spiked sample concentration SA = Spike added Where:

RPD = | LCS - LCSD | * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

-85

GI 72012

LCS ID:

LCSD = Laboratory control sample duplicate percent recovery

	LCS/LCSD	dad	nr.	1 Becalculated								•					
				Reported													
* * * * * * * * * * * * * * * * * * *	LCSD	Percent Recovery		Recalc.					\ 								
.,,		Percen		Reported						2	1	\					
	SOT	Percent Recovery		Hecaic.	30	10.2	9	٩	9	36							
		Percen		nepolen	28	103	10	9	99	96							
	Spiked Sample Concentration (wg \ \ \		l Cen	┸	4	·		 -	-			·					
	Spiked) (W	SOT		20.5	25.6	1.4.6		24.7	24.5			٠.				
	Spike	31/2	GSOT		V A	_			-	`							
	S S	```	rcs	,	28.0					→							
		Compound			r, r-Dichloroethene	Trichloroethene	Benzene	Toluena		Chlorobenzene							

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0%

LCSCLC.1SB

LDC#: 156154 SDG #: 19/1170

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	
Reviewer	P
2nd reviewer	Ń

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

N N/A N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(A_i)(I_i)(DF)$ (A,)(RRF)(V,)(%S) Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms

(ng)

Relative response factor of the calibration standard. RRF Volume or weight of sample pruged in milliliters (ml) or grams (g).

Df Dilution factor.

Percent solids, applicable to soils and solid matrices %S

Example:

Vinyl chloride

1092 ug/L

#	Sample ID	Compound		Reported Concentration	Calculated Concentration	Qualification
					 	Qualification
 						
					<u> </u>	
	·				·	
]	
· .	· · · · · · · · · · · · · · · · · · ·					
			\exists			
	, , , , , , , , , , , , , , , , , , , 					
	· · · · · · · · · · · · · · · · · · ·		1	·		
			\exists			
			T		· -	
			T			
			T			
			1		1.	
			\top	· · · · · · · · · · · · · · · · · · ·		
			\dagger			
			\top			
\dashv			\dagger			
			+			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg C-6

Collection Date:

September 8, 2006

LDC Report Date:

October 18, 2006

Matrix:

Water

Parameters:

Sulfide

Validation Level:

Tier 1

Laboratory:

TestAmerica

Sample Delivery Group (SDG): IPI0724

Sample Identification

CMW026_WG090806_0001

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 376.2 for Sulfide.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

Initial calibration data were not reviewed for Tier I.

b. Calibration Verification

Calibration verification data were not reviewed for Tier I.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the method blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg C-6 Sulfide - Data Qualification Summary - SDG IPI0724

No Sample Data Qualified in this SDG

Boeing Realty Corp., Bldg C-6 Sulfide - Laboratory Blank Data Qualification Summary - SDG IPI0724

No Sample Data Qualified in this SDG

Test/America

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Attention: Mehmet Pehlivan

701 N. Parkcenter Drive

Santa Ana, CA 92705

Project ID: Boeing C-6 Torrance

EM2727

Sampled: 09/08/06

Report Number: 1P10724

Received: 09/08/06

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPI0724-11 (CMW026_WG	090806_0001 - Wat	er)			Sample	ed: 09/08/0	06		
Reporting Units: mg/l Sulfide	EPA 376.2	6112105	0.010	0.10	0.15	1	09/12/06	09/12/06	

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

M 101801

SDG	#: <u>15615A6</u> #: <u>IPI0724</u> ratory: Del Mar Analytical -				PLETE Tier		S WORKS	SHEET	Date: lº 18/- Page: Lof L Reviewer: 2nd Reviewer:
The s	HOD: (Analyte)_Sulfide (EP camples listed below were reation findings worksheets.				ollowin	g valid	ation areas.	Validation findi	 ngs are noted in attached
	Validation A	ea						Comments	
1.	Technical holding times			A	Sampli	ng dates	s: 9/8/0 b		
IIa.	Initial calibration			N					
llb.	Calibration verification			N					
111,	Blanks			A	MI	<u> </u>			
١٧	Matrix Spike/Matrix Spike Dupl	icates		A A	μ	1	p 519	ZPI0893	
V	Duplicates			\					
VI.	Laboratory control samples			Α	Lu	<u> </u>			
VII.	Sample result verification			N					
VIII.	Overall assessment of data			A					
IX.	Field duplicates			V					
Lx_	Field blanks			\ \rac{1}{2}					
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet		R = Rin	o compound sate eld blank	s detecte	ed	D = Duplica TB = Trip b EB = Equip		
Validat	ted Samples:								
1	CMW026_WG090806_0001	11				21		31	
2	40	12				22		32	
3		13				23		33	
4		14				24		34	
5		15				25		35	
6		16		<u> </u>		26		36	
7		17			_	27		37	

Notes:_	 	 	 	 	 	
		 _				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg C-6

Collection Date:

September 11, 2006

LDC Report Date:

October 18, 2006

Matrix:

Water

Parameters:

Sulfide

Validation Level:

Tier 2

Laboratory:

TestAmerica

Sample Delivery Group (SDG): IPI0893

Sample Identification

CMW002_WG091106_0001

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 376.2 for Sulfide.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration of this method were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for this method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the method blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

Raw data were not reviewed for this SDG.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg C-6 Sulfide - Data Qualification Summary - SDG IPI0893

No Sample Data Qualified in this SDG

Boeing Realty Corp., Bldg C-6 Sulfide - Laboratory Blank Data Qualification Summary - SDG IPI0893

No Sample Data Qualified in this SDG

Test America

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing 701 N. Parkcenter Drive

Project ID: Boeing C-6 Torrance

C----1

Santa Ana, CA 92705

EM2727

Sampled: 09/11/06

Attention: Mehmet Pehlivan

Report Number: IPI0893

Received: 09/11/06

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IP10893-05 (CMW002_WG0	91106_0001 - Wat	er)							
Reporting Units: mg/l									
Sulfide	EPA 376.2	6I12105	0.010	0.10	0.041	1	09/12/06	09/12/06	J
Sample ID: IP10893-08 (IRZCMW002_V	/G091106_0001 - `	Water)							
Reporting Units: mg/l									
Sulfide	EPA 376.2	6112105_	-0.010	0.10	0.42	1	09/12/06	09/12/06	
Sample ID: IPI0893-10 (IRZCMW001_W	/G09 1106_0001 - \	Water)							
Reporting Units: mg/4									
Sulfide	EPA 376.2	6112105	0.010	0.10	ND		09/12/06	09/12/0 6	

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

x 101806

1 DC 4	t: 15615B6	VΔII	DATIO	N COME) FT	=NE	SS WORKSHEI	ET	Date:_ ^{ره} /ا ⁸ /
	#: IPI0893	VALI	DAIIO	IA COMIL	Tier		33 WORKSHEI	_ '	
	atory: <u>Test America</u>				i i c i .	_			Page: <u> </u> of / Reviewer: <u> </u>
Lubo	atory. <u>1000747107704</u>	-							2nd Reviewer:
The s	HOD: (Analyte)_Sulfide (E amples listed below were tion findings worksheets.			,	followin	g val	dation areas. Valid	ation findir	ngs are noted in attached
	Validation	Area					Cor	nments	
				4	0			michig	
1.	Technical holding times			1 5	Sampli	ng dat	es: 9/11/016		
lla.	Initial calibration			1 1					
IIb.	Calibration verification			A STAT					
111.	Blanks			A	 				
IV	Matrix Spike/Matrix Spike Du	plicates		A	 	سم	the sug	ms/M	1517
	Duplicates			P	<u> </u>				
VI.	Laboratory control samples			A	L	ツ			
VII.	Sample result verification			N					
VIII.	Overall assessment of data			A					
IX.	Field duplicates			μ					
×	Field blanks		*	<u> </u>					
Note: Validate	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:		R = Rin	o compound sate eld blank	ls detecte	ed	D = Duplicate TB = Trip blank EB = Equipment t	blank	
1	CMW002_WG091106_0001	11	:-			21		31	
2	Mr	12				22		32	
3		13				23		33	
4		14				24		34	
5		15				25		35	
6		16				26		36	
7		17		. ,,,,,		27		37	
								——————————————————————————————————————	

Notes:_

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Boeing Realty Corp., Former C-6 Torrance

Collection Date: June 16, 2006

LDC Report Date: October 18, 2006

Matrix: Water

Parameters: Sulfide

Validation Level: Tier 3

Laboratory: TestAmerica

Sample Delivery Group (SDG): IPF1882

Sample Identification

IRZB0081_WG061606_0001

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 376.2 for Sulfide.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. Calibration

a. Initial Calibration

All criteria for the initial calibration of this method were met.

b. Calibration Verification

Calibration verification frequency and analysis criteria were met for this method when applicable.

III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the method blanks.

IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

VII. Sample Result Verification

All sample result verifications were acceptable.

VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg C-6 Sulfide - Data Qualification Summary - SDG IPI1170

No Sample Data Qualified in this SDG

Boeing Realty Corp., Bldg C-6 Sulfide - Laboratory Blank Data Qualification Summary - SDG IPI1170

No Sample Data Qualified in this SDG

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing 701 N. Parkcenter Drive

Project ID: Boeing C-6 Torrance

EM2727

Sampled: 09/13/06

Santa Ana, CA 92705 Attention: Mehmet Pehlivan Report Number: IPI1170

Received: 09/13/06

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IPI1170-04 (IRZB0095_W	G091306_0001 - Wa	ter)							
Reporting Units: mg/l Sulfide	EPA 376.2	6114105	0.010	0.10	0.018	1	09/14/06	09/14/06	J
Sample ID: IPI1170-05 (IRZMW003A_	WG091306_0001 -	Water)							
Reporting Units: mg/l Sulfide	EPA 376.2	6I14105	0.010	0.10	0.089	1	09/14/06	09/14/06	J
Sample ID: IPI1170-06 (IRZMW001A_	WG091306_0001 -	Water)		- ·					
Reporting Units: mg/l Sulfide	EPA 376.2	6114105	0.010	0.10	0.039	1	09/14/06	09/14/06	J
Sample ID: IPI1170-07 (IRZB0081_WC	G091306_0001 - Wa	ter)							
Reporting Units: mg/l Sulfide	EPA 376.2	6114105	0.010	0.10	0.042	r	09/14/06	09/14/06	J

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced,

except in full, without written permission from TestAmerica.

SDG #	t: 15615C6 #: IPI1170 atory: <u>Test America</u>	VALI	DATIO	N COMF	PLETE Tier 3		SS WORKSHE	ET	Date: (0/18/ Page: of Reviewer: M^ 2nd Reviewer:
METH	IOD: (Analyte) _Sulfide (Ef	PA Met	hod 376	.2)					
	amples listed below were i tion findings worksheets.	reviewe	ed for ea	ch of the f	following	g valid	dation areas. Valid	ation findir	ngs are noted in attached
	Validation A	rea					Coi	mments	
I.	Technical holding times			A	Samplir	ng date	s: 9/13/06		
lla.	Initial calibration			A			()		
llb.	Calibration verification			A					
III.	Blanks			A					
IV	Matrix Spike/Matrix Spike Dup	olicates		A	hom	~ ~	but sample		
V	Duplicates			N					
VI.	Laboratory control samples			A	Les	>			
VII.	Sample result verification			A					
VIII.	Overall assessment of data			A					
IX.	Field duplicates			N					
L _X	Field blanks			N/					
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet		R = Rin	o compound sate eld blank	ls detecte	ed	D = Duplicate TB = Trip blank EB = Equipment	blank	
Validate	ed Samples:								
1	IRZB0095_WG091306_0001	11				21		31	
2	MB	12				22		32	
3		13				23		33	
4		14				24		34	
4 5 6 7 8		15				25		35	
6		16				26		36	
7		17				27		37	
8		18				28		38	

Notes:_

VALIDATION FINDINGS CHECKLIST

Page: 1_of_	
Reviewer: My	
2nd Reviewer:_a_/	_

Method:Inorganics (EPA Method $376 \sim$)

Method:Inorganics (EPA Method 3りんン)	-,	, <u>.</u>		
Validation Area	Yes	No	NA	Findings/Comments
f. Technical holding times. Tet				
All technical holding times were met.	/			
Coolor temperature criteria was met.	1/			
IIX Calibration.	G#A			
Were all instruments calibrated daily, each set-up time?	/			
Were the proper number of standards used?	/			
Were all initial calibration correlation coefficients ≥ 0.995?	/			
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	/			
Were titrant checks performed as required? (Level IV only)			_	
Were balance checks performed as required? (Level IV only)	DOS TO THE PARTY OF THE PARTY O		ار	
III: Blanks)				And the second s
Was a method blank associated with every sample in this SDG?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
IV Matrix spike/Matrix spike duplicates and Duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.				har eliet
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	1			
Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL.	/			
V Laboratory control samples:				
Was an LCS anaylzed for this SDG?				
Was an LCS analyzed per extraction batch?			\perp	
Were the LCS percent recoverles (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?				
VI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?			1	
Were the performance evaluation (PF) samples within the acceptance limits?			1	

LDC#: 1561546 SDG#: WFILTO

VALIDATION FINDINGS CHECKLIST

Page:	of
Reviewer:	my
2nd Reviewer:	A
	71

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Resulti Verification		lou k		
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	_			
Were detection limits < RL?	1			
VIII Overall assessment of data +1 g = 100 f =				
Overall assessment of data was found to be acceptable.				
X Field diplicates				
Field duplicate pairs were identified in this SDG.		/		
Target analytes were detected in the field duplicates.			/	
XaField blanks				
Field blanks were identified in this SDG.				
Target analytes were detected in the field blanks.				

DG #: (561566)

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

Page: of | Reviewer: W17_ 2nd Reviewer:

METHOD: Inorganics, Method 37 ん・ン

was recalculated. Calibration date:__ The correlation coefficient (r) for the calibration of _ An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

 $%R = Found \times 100$ True

Where. Found = concentration of each analyte measured in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

			1 /8 **		Recalculated	Reported	
Type of Analysis	Analyte		we, (Malle)	My (units)	r or %R	r or %R	Acceptable (Y/N)
Initial calibration		Blank	Q	0			
Calibration verification		Standard 1	7600	0,000			
		Standard 2	9/120	801.0			
		Standard 3	94.0	0.164	C/100	08770	7
	∽	Standard 4	7600	0.355	<1.21h 0 1/ <88 b 0 1 X	1 6/81/2 /V	_
		Standard 5					
		Standard 6				· · · · · · · · · · · · · · · · · · ·	
		Standard 7					
Calibration verification	\$	962,0	0,30 Az		07)	N.P.	\ \
Calibration verification							
Calibration verification							

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

CALCLC.6

LDC #:

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

2nd Reviewer: Page: Reviewer:__

> 396.7 METHOD: Inorganics, Method

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found x 100 Where,

Found =

True =

concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result).

concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = 1S-D1 × 100 Where,

Original sample concentration Duplicate sample concentration

|| || || O

					Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S (units)	True / D (units)	%R / RPD	%R / RPD	Acceptable (Y/N)
	Laboratory control sample					C	>
ź		S	oppro	0,40	96	4))
	Matrix spike sample		(SSR-SR)				
Exc12/1			ppt, o	09 p e	63	47	
19 -	Duplicate sample		_			,	7
<i>></i>		۵	(S).	0.41	٨	1	

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

TOTCLC.6

	15615C6 1951170	VALIDATION FINDINGS Sample Calculation		Page Reviewe 2nd reviewe	::(_of r: r:
	see qualifications belo <u>/A</u> Have results /A Are results w	ow for all questions answered "N". Not been reported and calculated correct within the calibrated range of the instruction limits below the CRQL?	ly?	are identified as "	N/A".
Compo	und (analyte) results f	for	repo	rted with a positiv	e detect were
Concentre		ng the following equation: Recalculation:			
5=	0,38068	<u>5</u>	= 0,507-0,3863	15 = 0,0	196 hg/2
#	Sample ID	Analyte	Reported Concentration (W/J U)	Calculated Concentration	Acceptable (Y/N)
		ঙ	0,018	P.018	4
					,
 					

Note:		

RECALC.6